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Motivation

Individual degree is a crucial factor in RDS analysis
@ network-based sampling = a statistically invalid sample of broader coverage

@ RDS provides a mathematical model of recruitment process then weights
network-based samples to compensate for non-random recruitment patterns.

@ Individual degree is used as a proxy for the sampling probability.
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Self-reported degree
@ is one commonly used estimation of degree

@ has well-documented problems (Brewer, 2000)

@ is frequently rounded to the nearest five or ten , known as heaping (Avery
et al., 2021)

@ can bias inferences when being used as sampling probability

Example from PATH Study (Lee, 2017)
@ "How many males/females in Great Detroit Area do you know who inject
and you have seen in the past 30 days?"
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Goals
@ explore the reporting behavior and establish reporting rules
@ propose a new estimation of the individual degree

@ quantify the extent to which using reported/estimated degree affects
statistical inference

Existing method | (Bar and Lillard, 2012)
@ analyze the reported data on smoking behavior
e "How long ago (in years) did you quit smoking”
@ assume respondents either report accurately or a heaped value
e other forms of reporting error? a random guess
@ propose a heaping rule: round the truth to the nearest multiples of 5 or 10

e reasonable for their research problem
e a more flexible rule may be more suitable in our case
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Existing method Il (McCormick, Salganik, and Zheng, 2010)

@ estimate personal network size by asking how many people they know in
specific subpopulations

e 12 subpopulations defined by the first name
e external data on the population-level size proportion of each selected
subpopulation in the nation.

@ propose a latent nonrandom mixing model which is built on the scale-up
method (Killworth et al., 1998) and resolves previously documented problems

@ when applied to RDS:

e most likely do not know target population-level size proportion of
people with particular first names
e use the nationwide information as a substitute

Our solution
@ blend the analysis of reporting behaviors and information of subpopulation

@ construct a latent variable model to make inferences about individual degree




Model Structure

F(d?|d;, i, r7)

f(yildi; pi)

@ d; (unobserved truth)
vs d (self-reported degree)

@ h = (hi,exacta hi,heapy hi,guess)v
reporting behavior indicator

@ r;: self-recruitment rate
@ y;: number of friends named Pat

@ X:: variables associated with d;
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Individual's true degree (d;) ~ Covariates of interest (x})

—

@ d; ~ O-truncated Poisson with mean on the log scale = >?,-Ta

@ x;: demographic characteristics and characters associated with the target
population

Number of Pat friends (y;) ~ Individual's true degree (d;)
® y; ~ Binomial(d;, p;), p;i is known

@ assume no or small reporting error in y; (nationwide size proportion ~ 1%)
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—

Reporting behavior (h;) ~ Individual's true degree (d;)
@ Assume 3 possible reporting behaviors:

e reporting accurately: d = d;
o heaping, i.e., a multiple of 5: d = 5n
e making a guess

@ Intuitively, people are more likely to heap if d; is large. Conversely, reporting
an exact value if d; is small. Otherwise, some guesses will be reported.
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Reporting behavior (f;) ~ Individual degree (d;) (Cont.)

° H; = (hi,exacta hi,heapa hi,guess) ~ MUItinomial('?(di; E)), where ’? is modeled
lOg(M) = ﬁexacLO + Bexact,l di

Yi,guess

/Og(m) = ﬂheap,o + ﬁheap,ldi

7Yi,guess

via a spline model:

Bexact = (3x'0-5)vBheap = (‘5,0-4)
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Reporting rules f(d}|d;, hi, r)
@ if hj exact = 1, always report the truth: Pr(d*|d;, hj exact = 1) = I(d = d;)
@ for the other two cases, leverage the information provided by r;:

o if recruiting less than average, the participant is believed to
overestimate his degree: d > d;
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Reporting rules f(d}|d;, /7, r;) (Cont.)

@ if hj guess = 1, d; is drawn from a truncated Negative Binomial distribution:

(d*>d)M7 ifri<r
Pr(d;|d;, hi guess = 1, ri) = P’:(rxx?jd)) ; F
if rp; >r

I(d7 > 0)Frx=0y -
where X ~ NegBin(d;, ¢), E[X] = d;, Var[X] = d; + d?/¢

NB(p=10, $=2), ri<r NB(u=10, ¢$=2), ri=r
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Reporting rules £(d*|d;, hj, r;) (Cont.)

@ if hjpeap =1, d isa multlple of 5, drawn from
Zk>12 5! (df = 5[di/5] + 5k), if r <
Pr(d:|d;, hi heap = 1,1;) = { | Pr(d? = 5|di/5] + 5ki|d}, hi heap=1) :m N
Pr(d =5d:/5] — Sholdi, hipespr) = =i e
@ Under this model )
o most likely, a heaped value around the truth will be reported.

e appropriate values of (d1,02) result in extremely large reported degree.

di=171 61=O. 8, ri<F

0.20
. 0.15
Q.10
0.05
5 10 15 20 25 30 35 40 45 50
Possible reported degree

di=17, 6,=0. 8, ;> r

0.20 P
/

0.15 A
o A
X010 /

0.05 /./

0.00

5 10 15 20 25 30 35 40 45 50

Possible reported degree



Computation Algorithm

Algorithm: Monte Carlo Expectation-Maximization algorithm

Result: Posterior mean of unobserved latent individual degree conditional on
the observed data
Input : Observed data Y,ps = {reported degree d}, self-recruitment rate r;,
number of acquaintance in a subpopulation y;,
characteristics of interest X;}
External information: size proportion of the subpopulation p
Step 1: Initialize unobserved latent variables:
Ymis = {individual degree di(o), reporting behavior indicator H(o)}
Initialize hyperparameters of interest ©(© = {F®, 50 50 401
Step 2: Monte Carlo - Expectation step:
simulate a sample { Yis,i }M, from f(Yiis; ©1®)
estimate the expectation of functions of data g(Yim:s):

21 &(Yobs. Yois)F( Yobs| Yimis)
Eyv o(Y.:) n iz &Yobs: Ymis) (Yobs| Yimis
Vs 8(Vimis) S F Yot Yonis)

Step 3: Maximization step:
update the estimates ©(**1) via a one-step Fisher scoring algorithm
Step 4: Iterate between Steps 2 and 3 until convergence




Simulation Study

Create a population of size 5000. For individual i, simulate

multiple characteristics x;

degree d; ~ Poisson(y = ezT&)

the number of Pat friends y; ~ Binomial(d;, p)

self-recruitment rate r; from {0,1/3,2/3,1} with probability
(0.4,0.3,0.2,0.1)

reported degree d; following the proposed reporting mechanism
a binary trait correlated with d; and dj
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Simulate 1000 RDS samples:
@ build a social connection network based on simulated {d;}" ;
@ recruit individuals following the standard RDS procedure:

e start with 3 seeds, sampling w/o replacement w/. probability
proportional to d;

o issue min(3,d;") coupons to each participant

e select subsequent participants w/o replacement and at random from
among the contacts of the current recruiter

o keep recruiting (and add seeds if necessary) until reaching 500
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Degree estimation of a randomly chosen sample

& -d 4

i
Freq. of multiples of 5 22.6% 51% 21.6%

100
2 -df
i 50 " d
.-
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di
Summary of 1000 samples

d; d:

Ave.MSE 9.77  574.15
SD.MSE 101 93.14

Ave.Freq of Multiples of 5 20.52% 46.96%

Note: MSE(x) = 3%, (di — x;)?/s
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Methods of estimating the prevalence of a binary trait
@ all use degree as sampling weights in some form

@ RDS_I (Salganik and Heckathorn, 2004): equate the number of network ties
between every pair of subgroups with different trait responses, with a critical
step to estimate average degree for people in different trait groups

@ RDS_II (Volz and Heckathorn, 2008): generalize Horvitz-Thompson type
point estimator by approximating the sampling probability as proportional to
the individual's degree

@ RDS_SS (Gile, 2011): advance RDS_II by incorporating successive sampling
model to account for the sampling without replacement feature
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Sample-based estimated prevalence of a binary trait

RDS._I RDS_II RDS_SS
Degree type d; (9,- d* d; CA/,- dr d; d; df

1 1

Ave.Bias 0.001 -0.007 -0.227 0.001 -0.006 -0.227 0.004 -0.003 -0.214
Ave.SD 0.035 0.037 0.060 0.050 0.050 0.051 0.046 0.047 0.051
Cl width™ 0.139 0.145 0.237 0.195 0.196 0.201 0.182 0.183 0.200
Coverage rate 0.991 0.990 0.012 0.998 0.999 0.001 0.996 0.998 0.001

Notes: this trait has 70% true prevalence,
and its Spearsman’s rank correlation with d*(d;) is 0.67(0.46);
Cl width M= 95% confidence interval width.
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Discussion

Ou

=

modeling of the reporting mechanism

o identify different sources of reporting error by specifying multiple types
of reporting behaviors
e conform to the intuition and well explain the observed data

The proposed individual degree estimation

e blend the analysis of reporting behaviors and information of number of
acquaintance in a subpopulation and self-recruitment rate

o yield modestly biased point estimation

e improve statistical inference when serving as sampling probability

Our framework

o is flexible to accommodate any distribution assumptions researchers
believe underline the data-generating process
e is vulnerable to model misspecification as a model-based approach
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