Network Size: Measurement and Errors in Respondent-Driven Sampling

JPSM/MPSDS Seminar

Ai Rene Ong, Yibo Wang

March 8, 2023

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

A Latent Variable Model for Individual Degree Estimation in Respondent-Driven Sampling

Motivation

Individual degree is a crucial factor in RDS analysis

- $\bullet\,$ network-based sampling \Rightarrow a statistically invalid sample of broader coverage
- RDS provides a mathematical model of recruitment process then weights network-based samples to compensate for non-random recruitment patterns.

• Individual degree is used as a proxy for the sampling probability.

Self-reported degree

- is one commonly used estimation of degree
- has well-documented problems (Brewer, 2000)
- is frequently rounded to the nearest five or ten , known as **heaping** (Avery et al., 2021)
- can bias inferences when being used as sampling probability

Example from PATH Study (Lee, 2017)

• "How many males/females in Great Detroit Area do you know who inject and you have seen in the past 30 days?"

Goals

- explore the reporting behavior and establish reporting rules
- propose a new estimation of the individual degree
- quantify the extent to which using reported/estimated degree affects statistical inference

Existing method I (Bar and Lillard, 2012)

- analyze the reported data on smoking behavior
 - "How long ago (in years) did you quit smoking"
- assume respondents either report accurately or a heaped value
 - other forms of reporting error? a random guess
- propose a heaping rule: round the truth to the nearest multiples of 5 or 10
 - reasonable for their research problem
 - a more flexible rule may be more suitable in our case

Existing method II (McCormick, Salganik, and Zheng, 2010)

- estimate personal network size by asking how many people they know in specific subpopulations
 - 12 subpopulations defined by the first name
 - external data on the population-level size proportion of each selected subpopulation in the nation.
- propose a latent nonrandom mixing model which is built on the scale-up method (Killworth et al., 1998) and resolves previously documented problems
- when applied to RDS:
 - most likely do not know target population-level size proportion of people with particular first names
 - use the nationwide information as a substitute

Our solution

- blend the analysis of reporting behaviors and information of subpopulation
- construct a latent variable model to make inferences about individual degree

Model Structure

- *d_i* (unobserved truth)
 vs *d_i*^{*} (self-reported degree)
- $\vec{h_i} = (h_{i,exact}, h_{i,heap}, h_{i,guess}),$ reporting behavior indicator
- r_i: self-recruitment rate
- y_i: number of friends named Pat

• $\vec{x_i}$: variables associated with d_i

Individual's true degree $(d_i) \sim \text{Covariates of interest} (\vec{x_i})$

- $d_i \sim 0$ -truncated Poisson with mean on the log scale = $\vec{x_i}^T \vec{\alpha}$
- $\vec{x_i}$: demographic characteristics and characters associated with the target population

Number of Pat friends $(y_i) \sim$ Individual's true degree (d_i)

- $y_i \sim Binomial(d_i, p_i), p_i$ is known
- assume no or small reporting error in y_i (nationwide size proportion $\approx 1\%$)

A D N A 目 N A E N A E N A B N A C N

Reporting behavior $(\vec{h_i}) \sim$ Individual's true degree (d_i)

- Assume 3 possible reporting behaviors:
 - reporting accurately: $d_i^* = d_i$
 - heaping, i.e., a multiple of 5: $d_i^* = 5n$
 - making a guess
- Intuitively, people are more likely to heap if *d_i* is large. Conversely, reporting an exact value if *d_i* is small. Otherwise, some guesses will be reported.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Reporting behavior $(\vec{h_i}) \sim \text{Individual degree } (d_i)$ (Cont.)

•
$$\vec{h_i} = (h_{i,exact}, h_{i,heap}, h_{i,guess}) \sim Multinomial(\vec{\gamma}(d_i; \vec{\beta}))$$
, where $\vec{\gamma}$ is modeled
via a spline model:
$$\begin{cases} log(\frac{\gamma_{i,exact}}{\gamma_{i,guess}}) = \beta_{exact,0} + \beta_{exact,1}d_i \\ log(\frac{\gamma_{i,heap}}{\gamma_{i,guess}}) = \beta_{heap,0} + \beta_{heap,1}d_i \end{cases}$$

Reporting rules $f(d_i^*|d_i, \vec{h_i}, r_i)$

• if $h_{i,exact} = 1$, always report the truth: $Pr(d_i^*|d_i, h_{i,exact} = 1) = I(d_i^* = d_i)$

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

- for the other two cases, leverage the information provided by r_i:
 - if recruiting less than average, the participant is believed to overestimate his degree: d^{*}_i > d_i

Reporting rules $f(d_i^*|d_i, \vec{h_i}, r_i)$ (Cont.)

• if $h_{i,guess} = 1$, d_i^* is drawn from a truncated Negative Binomial distribution: $Pr(d_i^*|d_i, h_{i,guess} = 1, r_i) = \begin{cases} I(d_i^* > d_i) \frac{Pr(X=d_i^*)}{Pr(X>d_i)}, & \text{if } r_i < \overline{r} \\ I(d_i^* > 0) \frac{Pr(X=d_i^*)}{Pr(X>0)}, & \text{if } r_i \ge \overline{r} \end{cases}$ where $X \sim \text{NegBin}(d_i, \phi), E[X] = d_i, Var[X] = d_i + d_i^2/\phi$

Reporting rules $f(d_i^*|d_i, \vec{h_i}, r_i)$ (Cont.)

• if
$$h_{i,heap} = 1$$
, d_i^* is a multiple of 5, drawn from

$$Pr(d_i^*|d_i, h_{i,heap} = 1, r_i) = \begin{cases} \sum_{k \ge 1} \frac{\delta_1^k}{\sum_{n \ge 1} \delta_1^n} I(d_i^* = 5\lfloor d_i/5 \rfloor + 5k), & \text{if } r_i < \bar{r} \\ Pr(d_i^* = 5\lfloor d_i/5 \rfloor + 5k_1 | d_i, h_{i,heap} = 1) = \frac{\delta_1^{k_1}}{\sum_{n \ge 1} \delta_2^{n_1} + \sum_{n \ge 0}^{k} (1 - \delta_2)^{n_2}} \\ Pr(d_i^* = 5\lfloor d_i/5 \rfloor - 5k_2 | d_i, h_{i,heap} = 1) = \frac{(1 - \delta_2)^{n_2}}{\sum_{n \ge 1} \delta_2^{n_1} + \sum_{n \ge 0}^{k} (1 - \delta_2)^{n_2}} \end{cases}, & \text{if } r_i \ge \bar{r} \end{cases}$$

- Under this model
 - most likely, a heaped value around the truth will be reported.
 - appropriate values of (δ_1, δ_2) result in extremely large reported degree.

Computation Algorithm

Algorithm: Monte Carlo Expectation-Maximization algorithm					
Result: Posterior mean of unobserved latent individual degree conditional on					
the observed data					
Input : Observed data $Y_{obs} = \{$ reported degree d_i^* , self-recruitment rate r_i ,					
number of acquaintance in a subpopulation y_i ,					
characteristics of interest $\vec{x_i}$					
External information: size proportion of the subpopulation p					
Step 1: Initialize unobserved latent variables:					
$Y_{mis} = \{ individual \; degree \; d_i^{(0)}, \; reporting \; behavior \; indicator \; ec{h_i^{(0)}} \}$					
Initialize hyperparameters of interest $\Theta^{(0)}=\{ec{lpha}^{(0)},ec{eta}^{(0)},ec{\delta}^{(0)},\phi^{(0)}\}$					
Step 2: Monte Carlo - Expectation step:					
simulate a sample $\{Y_{mis,i}\}_{i=1}^{M}$ from $f(Y_{mis}; \Theta^{(t)})$					
estimate the expectation of functions of data $g(Y_{mis})$:					
$E_{Y_{mis}}g(Y_{mis}) \approx \frac{\sum_{i=1}^{M} g(Y_{obs}, Y_{mis})f(Y_{obs} Y_{mis})}{\sum_{i=1}^{M} f(Y_{obs} Y_{mis})}$					
Step 3: Maximization step:					
update the estimates $\Theta^{(t+1)}$ via a one-step Fisher scoring algorithm					
Step 4: Iterate between Steps 2 and 3 until convergence					

Simulation Study

Create a population of size 5000. For individual *i*, simulate

- multiple characteristics $\vec{x_i}$
- degree $d_i \sim Poisson(\mu = e^{\vec{x_i}^T \vec{\alpha}})$
- the number of Pat friends $y_i \sim Binomial(d_i, p)$
- self-recruitment rate r_i from $\{0, 1/3, 2/3, 1\}$ with probability (0.4, 0.3, 0.2, 0.1)
- reported degree d_i^* following the proposed reporting mechanism

A D N A 目 N A E N A E N A B N A C N

• a binary trait correlated with d_i^* and d_i

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Simulate 1000 RDS samples:

- build a social connection network based on simulated $\{d_i\}_{i=1}^N$
- recruit individuals following the standard RDS procedure:
 - start with 3 seeds, sampling w/o replacement w/. probability proportional to d_i
 - issue $min(3, d_i^*)$ coupons to each participant
 - select subsequent participants w/o replacement and at random from among the contacts of the current recruiter

• keep recruiting (and add seeds if necessary) until reaching 500

Degree estimation of a randomly chosen sample

Summary of 1000 samples

	<i>â</i> _i	d_i^*
Ave.MSE	9.77	574.15
SD.MSE	1.91	93.14
Ave.Freq of Multiples of 5	20.52%	46.96%
Note: $MSE(x) = \sum_{i=1}^{s} (d_i - x_i)^2 / s$		

Methods of estimating the prevalence of a binary trait

- all use degree as sampling weights in some form
- RDS_I (Salganik and Heckathorn, 2004): equate the number of network ties between every pair of subgroups with different trait responses, with a critical step to estimate average degree for people in different trait groups
- RDS_II (Volz and Heckathorn, 2008): generalize Horvitz-Thompson type point estimator by approximating the sampling probability as proportional to the individual's degree
- RDS_SS (Gile, 2011): advance RDS_II by incorporating successive sampling model to account for the sampling without replacement feature

Sample-based estimated prevalence of a binary trait

		RDS_I			RDS_II			RDS_SS		
Degree type	di	\hat{d}_i	d_i^*	di	\hat{d}_i	d_i^*	di	\hat{d}_i	d_i^*	
Ave.Bias	0.001	-0.007	-0.227	0.001	-0.006	-0.227	0.004	-0.003	-0.214	
Ave.SD	0.035	0.037	0.060	0.050	0.050	0.051	0.046	0.047	0.051	
CI width ^[1]	0.139	0.145	0.237	0.195	0.196	0.201	0.182	0.183	0.200	
Coverage rate	0.991	0.990	0.012	0.998	0.999	0.001	0.996	0.998	0.001	

Notes: this trait has 70% true prevalence,

and its Spearsman's rank correlation with $d_i^*(d_i)$ is 0.67(0.46); CI width ^[1]= 95% confidence interval width.

Discussion

Our modeling of the reporting mechanism

- identify different sources of reporting error by specifying multiple types of reporting behaviors
- conform to the intuition and well explain the observed data

The proposed individual degree estimation

- blend the analysis of reporting behaviors and information of number of acquaintance in a subpopulation and self-recruitment rate
- yield modestly biased point estimation
- improve statistical inference when serving as sampling probability

Our framework

- is flexible to accommodate any distribution assumptions researchers believe underline the data-generating process
- is vulnerable to model misspecification as a model-based approach

- Avery, Lisa et al. (2021). "A review of reported network degree and recruitment characteristics in respondent driven sampling implications for applied researchers and methodologists". In: *Plos one* 16.4, e0249074.
- Bar, Haim Y and Dean R Lillard (2012). "Accounting for heaping in retrospectively reported event data-a mixture-model approach". In: *Statistics in medicine* 31.27, pp. 3347–3365.
- Brewer, Devon D (2000). "Forgetting in the recall-based elicitation of personal and social networks". In: Social networks 22.1, pp. 29–43.
- Gile, Krista J (2011). "Improved inference for respondent-driven sampling data with application to HIV prevalence estimation". In: Journal of the American Statistical Association 106.493, pp. 135–146.
- Killworth, Peter D et al. (1998). "Estimation of seroprevalence, rape, and homelessness in the United States using a social network approach". In: *Evaluation review* 22.2, pp. 289–308.
- Lee, Juliette Roddy (2017). "Project positive attitudes towards health, Michigan, 2017". In.
- McCormick, Tyler H, Matthew J Salganik, and Tian Zheng (2010). "How many people do you know?: Efficiently estimating personal network size". In: *Journal of the American Statistical Association* 105.489, pp. 59–70.
- Salganik, Matthew J and Douglas D Heckathorn (2004). "Sampling and estimation in hidden populations using respondent-driven sampling". In: Sociological methodology 34.1, pp. 193–240.
- Volz, Erik and Douglas D Heckathorn (2008). "Probability based estimation theory for respondent driven sampling". In: *Journal of official statistics* 24.1, p. 79.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00