When "Representative" Surveys Fail:
 Can a Non-ignorable Missingness Mechanism Explain Bias in Estimates of COVID-19 Vaccine Uptake?

Rebecca Andridge

The Ohio State University College of Public Health
March 13, 2024

Outline

(1) The Problem
(2) The Large COVID-19 Surveys
(3) Proxy Pattern-Mixture Model (PPMM) for Binary Outcomes
4. Results from Applying PPMM to COVID-19 Surveys
(5) Summary and Related/Future Work

"Big Data": Friend or Foe?

WE FOUNOND LINK BEIWEEN PURPE JEaY BEPNS PNDAGE ($\mathrm{P}>0.05$).	WE FONONO LINK BETEEN brown jelur BEPNS AND ACNE ($\mathrm{p}>0.05$).	WE FOUNDNO LINK BETNEEN Pink Jellr BEFRS AND AONE (>0.05).	WE FOUNDND LIN BETNEEN buE Jeur BEPNS PNOAONE ($\mathrm{P}>0.05$).	WE FOUNDND LINK BETNEEN teal jeuy SEPNS PNDAONE ($p>0.05$).
WE FOUNDND LINK BETWEEN SAMMON JELY ($\mathrm{P}>0.05$).	WE FOUNONO LNK BETWEEN Red Jeur BEANS ANDAONE ($P>0.05$).	WE FOUNONO LINK BETWEEN turauase jeur BEFAS ANOANE ($P>0.05$)	WE FOUNDND LINK BETNEEN macenta Jeler BEANS AND ANE ($P>0.05$).	WE FOUNDND LNK BETNEEN Yelow Jear BEENS ANDANE ($P>0.05$).
We FOUNDND LINK BETWEEN grey jelv GEFWS ANDANE ($\mathrm{P}>0.05$)	WE FOUNONO LINK BCTVEEN TAN JELY BEANS AND AGEL ($P>0.05$)	WE FOUNDND LINK BCTWEEN CTAN JELU BEFNS AND ANE ($P>0.05$)	WE FOUND A LINK BETNEEN GREen Jeir BEFAN AND ANE $(P<0.05)$ WHOA!	WE FOUNDND LINK BETNEEN madue jelu ($P>0.05$).
WE FONDND LIN BEIWEEN beige Jelr BEFNS PND AGNE ($\mathrm{P}>0.05$).	WE FOUNONO LINK BEIWEEN LIAC Jelv BEFANS FRDAONE ($\mathrm{P}>0.05$).	WE FOUNONO LINK BETWEEN Back Jeur BEFNS PNDAONE ($\gg 0.05$).	WE FOUNDND LINK BETNEEN PPBCH Jelur BEERS PROAONE $(P>0.05)$.	WE FOUNDND LINK BETNEEN oremge Jelur GEFNS FRDAONE $(\mathrm{P}>0.05$).

"Big Data" : Friend or Foe?

"Big Data": Friend or Foe?

๑marketoonist.com

"Big Data" : Friend or Foe?

TIME WELL SPENTTM

"Big Data" : Friend or Foe?

Problems most people immediately think of:

- Big sample size \rightarrow small p-values
- Multiple testing
- "Spurious correlations"
"Big Data": Friend or Foe?

Problems most people immediately think of:

- Big sample size \rightarrow small p-values
- Multiple testing
- "Spurious correlations"

Another major issue: Selection bias
Also a problem for "Big Surveys" with low response rates

- "Big Data" $=$ Non-probability samples \rightarrow Selection bias
- "Big Surveys" $=$ Probability samples \rightarrow Nonresponse bias

"Big (COVID) Surveys" = "Big Miss" . .

-19 Vaccination Record Card
his record card, which includes medical information
COVID-19 Vaccination Record Card
Please keep this record card which in about ${ }^{*}$
wou mon surn
Porfav
Key surveys overestimate COVID-19 vaccination rates in the USA

Share this Estimates of COVID-19 vaccine uptake in the USA based on large surveys that are used to D guide policy-making decisions tend to overestimate the number of vaccinated individuals, research published in Nature suggests.

(Over-)Estimation of COVID-19 Vaccine Uptake

"Big Data Paradox: The bigger the data, the surer we fool ourselves" (Meng 2018, p.702)

Problem Statement

Goal: Estimate population proportion from probability samples with very low response rates (effectively non-probability samples)
\rightarrow Proportion having at least one dose of COVID-19 vaccine

Problem Statement

Goal: Estimate population proportion from probability samples with very low response rates (effectively non-probability samples)
\rightarrow Proportion having at least one dose of COVID-19 vaccine
Problem: Potential for bias due to non-ignorable nonresponse

- Ignorable: probability of survey participation depends on observed characteristics
- Non-ignorable: probability of survey participation depends at least in part on unobserved characteristics
\rightarrow Participation might depend on your vaccine status

Problem Statement

Goal: Estimate population proportion from probability samples with very low response rates (effectively non-probability samples)
\rightarrow Proportion having at least one dose of COVID-19 vaccine
Problem: Potential for bias due to non-ignorable nonresponse

- Ignorable: probability of survey participation depends on observed characteristics
- Non-ignorable: probability of survey participation depends at least in part on unobserved characteristics
\rightarrow Participation might depend on your vaccine status
Approach: Use the Proxy Pattern-Mixture Model (PPMM) to assess potential nonresponse/selection bias in proportion estimates (Andridge and Little 2020; Andridge et al. 2019) \rightarrow Sensitivity analysis allowing survey participation to depend on vaccine status

Outline

(1) The Problem
(2) The Large COVID-19 Surveys
(3) Proxy Pattern-Mixture Model (PPMM) for Binary Outcomes
4. Results from Applying PPMM to COVID-19 Surveys
(5) Summary and Related/Future Work

Census Household Pulse Survey (HPS)*

- Launched April 23, 2020; still ongoing
- Collaboration between 8+ agencies
- Online survey (Qualtrics)
- Repeated cross-sectional probability samples
- Sampling frame: Census Bureau Master Address File where at least one email address or cell phone known
- 1- and then 2-week waves
- $\mathrm{n}=68,000-80,000$ respondents per wave [Jan-May 2021]

Q: Have you received a COVID-19 vaccine? \{Yes, No\}

[^0]
Delphi-Facebook COVID-19 Trends and Impacts Survey (CTIS)*

- Launched April 6, 2020; Ended June 25, 2022
- Both U.S. and Global samples
- Online survey (Qualtrics)
- Repeated cross-sectional probability samples
- Sampling frame: Facebook users $18+$ who were active on the platform in the last month
- Daily samples (pooled into weekly waves)
- $\mathrm{n}=160,000-290,000$ respondents per wave [Jan-May 2021]

Q: Have you had a COVID-19 vaccination? \{Yes, No, I don't know\}

[^1]
Big Surveys, Small Response Rates

Census HPS Response Rates*

[^2]
Big Surveys, Small Response Rates

Delphi-Facebook Cooperation Rates*

[^3]
Compare to Traditional "Big Survey" Response Rates

COVID Surveys: Respondents don't resemble Population

Age*

[^4]
COVID Surveys: Respondents don't resemble Population

Gender*

[^5]
COVID Surveys: Respondents don't resemble Population

Education

COVID Surveys: Respondents don't resemble Population

Race and Ethnicity

Delphi-Facebook CTIS

Solution: Nonresponse Weighting Adjustments

- Adjust sample weights to make respondents "look like" population
- Upweight male, younger, lower education, non-white

Solution: Nonresponse Weighting Adjustments

- Adjust sample weights to make respondents "look like" population
- Upweight male, younger, lower education, non-white
- Both surveys did this, but with limited demographic information:
- Census HPS: age, gender ${ }^{1}$, race/ethnicity, education, state
- Delphi-Facebook: age, gender ${ }^{2}$
- Population data sources: American Community Survey, Current Population Survey

[^6]
Solution: Nonresponse Weighting Adjustments

- Adjust sample weights to make respondents "look like" population
- Upweight male, younger, lower education, non-white
- Both surveys did this, but with limited demographic information:
- Census HPS: age, gender ${ }^{1}$, race/ethnicity, education, state
- Delphi-Facebook: age, gender ${ }^{2}$
- Population data sources: American Community Survey, Current Population Survey
- Weighting makes respondents look like the population with respect to the weighting variables
- Assumes that two people of the same (age, gender, race/ethnicity, education) or (age, gender) are interchangeable, one who participated and one who did not

[^7]
Solution: Nonresponse Weighting Adjustments

- Adjust sample weights to make respondents "look like" population
- Upweight male, younger, lower education, non-white
- Both surveys did this, but with limited demographic information:
- Census HPS: age, gender ${ }^{1}$, race/ethnicity, education, state
- Delphi-Facebook: age, gender ${ }^{2}$
- Population data sources: American Community Survey, Current Population Survey
- Weighting makes respondents look like the population with respect to the weighting variables
- Assumes that two people of the same (age, gender, race/ethnicity, education) or (age, gender) are interchangeable, one who participated and one who did not
Do we believe this assumption? In the context of COVID?

[^8]
Weighting Helped Somewhat. . . But Not Enough!

Weighted estimates closer to truth, but still biased
Let's see if the PPMM can do better!

Outline

(1) The Problem

(2) The Large COVID-19 Surveys

(3) Proxy Pattern-Mixture Model (PPMM) for Binary Outcomes
4. Results from Applying PPMM to COVID-19 Surveys
(5) Summary and Related/Future Work

PPMM for Binary Outcomes

- $Y=$ binary variable of interest, only available for respondents
- Individual has received $1+$ dose of vaccine
- $Z=$ auxiliary variables, available for respondents and in aggregate for population (\bar{Z})
- Age, gender, race/ethnicity, education (HPS)
- $S=$ indicator for unit selected and responded

PPMM for Binary Outcomes

- $Y=$ binary variable of interest, only available for respondents
- Individual has received $1+$ dose of vaccine
- $Z=$ auxiliary variables, available for respondents and in aggregate for population (\bar{Z})
- Age, gender, race/ethnicity, education (HPS)
- $S=$ indicator for unit selected and responded
- $U=$ underlying normally distributed unobserved latent variable
- $Y=1$ when $U>0$

PPMM for Binary Outcomes

- $Y=$ binary variable of interest, only available for respondents
- Individual has received $1+$ dose of vaccine
- $Z=$ auxiliary variables, available for respondents and in aggregate for population (\bar{Z})
- Age, gender, race/ethnicity, education (HPS)
- $S=$ indicator for unit selected and responded
- $U=$ underlying normally distributed unobserved latent variable
- $Y=1$ when $U>0$
- $X=$ "proxy" for Y, based on Z
- Constructed from probit regression: $P(Y=1 \mid Z, S=1)=\Phi\left(\alpha_{0}+\alpha Z\right)$
- Available at individual-level for selected/respondents: $X=\hat{\alpha}_{0}+\hat{\alpha} Z$
- Available in aggregate for rest of population: $\bar{X}=\hat{\alpha}_{0}+\hat{\alpha} \bar{Z}$
- Proxy strength $=\operatorname{Biserial} \operatorname{Corr}(Y, X \mid S=1)=\operatorname{Corr}(U, X \mid S=1)$

PPMM for Binary Outcomes

Basic idea:

- We can measure the degree of bias in the proxy X (known for population!)

PPMM for Binary Outcomes

Basic idea:

- We can measure the degree of bias in the proxy X (known for population!)
- If Y is correlated with X, then this tells you something about the potential bias in Y

PPMM for Binary Outcomes

Basic idea:

- We can measure the degree of bias in the proxy X (known for population!)
- If Y is correlated with X, then this tells you something about the potential bias in Y

General approach:

- Use pattern-mixture models to specify $f(Y, X, S)=f(Y, X \mid S) f(S)$
- Only $f(Y, X \mid S=1)$ identifiable (and $f(X \mid S=0)$)
- Make explicit, untestable assumption(s) about S to identify $f(Y, X \mid S=0)$
- Creates sensitivity analysis to assess range of bias under different assumptions about S

PPMM for Binary Outcomes

Basic idea:

- We can measure the degree of bias in the proxy X (known for population!)
- If Y is correlated with X, then this tells you something about the potential bias in Y

General approach:

- Use pattern-mixture models to specify $f(Y, X, S)=f(Y, X \mid S) f(S)$
- Only $f(Y, X \mid S=1)$ identifiable (and $f(X \mid S=0)$)
- Make explicit, untestable assumption(s) about S to identify $f(Y, X \mid S=0)$
- Creates sensitivity analysis to assess range of bias under different assumptions about S

Trick for convenience:

- Use latent U instead of binary Y

PPMM: Theory

- Assume a proxy pattern-mixture model ${ }^{*}$ for U and X given S :

$$
\begin{aligned}
(U, X \mid S=j) & \sim N_{2}\left(\left[\begin{array}{c}
\mu_{u}^{(j)} \\
\mu_{x}^{(j)}
\end{array}\right],\left[\begin{array}{cc}
\sigma_{u u}^{(j)} & \rho_{u x}^{(j)} \sqrt{\sigma_{u u}^{(j)} \sigma_{x x}^{(j)}} \\
\rho_{u x}^{(j)} \sqrt{\sigma_{u u}^{(j)} \sigma_{x x}^{(j)}} & \sigma_{x x}^{(j)}
\end{array}\right]\right) \\
S & \sim \operatorname{Bernoulli}(\pi)
\end{aligned}
$$

- WLOG set $\sigma_{u u}^{(1)}=1$ (latent variable scale)

[^9]
PPMM: Theory

- Assume a proxy pattern-mixture model ${ }^{*}$ for U and X given S :

$$
\begin{aligned}
(U, X \mid S=j) & \sim N_{2}\left(\left[\begin{array}{c}
\mu_{u}^{(j)} \\
\mu_{x}^{(j)}
\end{array}\right],\left[\begin{array}{cc}
\sigma_{u u}^{(j)} & \rho_{u x}^{(j)} \sqrt{\sigma_{u u}^{(j)} \sigma_{x x}^{(j)}} \\
\rho_{u x}^{(j)} \sqrt{\sigma_{u u}^{(j)} \sigma_{x x}^{(j)}} & \sigma_{x x}^{(j)}
\end{array}\right]\right) \\
S & \sim \operatorname{Bernoulli}(\pi)
\end{aligned}
$$

- WLOG set $\sigma_{u u}^{(1)}=1$ (latent variable scale)
- Marginal mean of Y is target of inference:

$$
\mu_{y}=\operatorname{Pr}(Y=1)=\operatorname{Pr}(U>0)=\pi \underbrace{\Phi\left(\mu_{u}^{(1)}\right)}_{\text {respondents }}+(1-\pi) \underbrace{\Phi\left(\mu_{u}^{(0)} / \sqrt{\sigma_{u u}^{(0)}}\right)}_{\text {rest of pop. }}
$$

[^10]
PPMM: Theory

- Assume a proxy pattern-mixture model ${ }^{*}$ for U and X given S :

$$
\begin{aligned}
(U, X \mid S=j) & \sim N_{2}\left(\left[\begin{array}{c}
\mu_{u}^{(j)} \\
\mu_{x}^{(j)}
\end{array}\right],\left[\begin{array}{cc}
\sigma_{u u}^{(j)} & \rho_{u x}^{(j)} \sqrt{\sigma_{u u}^{(j)} \sigma_{x x}^{(j)}} \\
\rho_{u x}^{(j)} \sqrt{\sigma_{u u}^{(j)} \sigma_{x x}^{(j)}} & \sigma_{x x}^{(j)}
\end{array}\right]\right) \\
S & \sim \operatorname{Bernoulli}(\pi)
\end{aligned}
$$

- WLOG set $\sigma_{u u}^{(1)}=1$ (latent variable scale)
- Marginal mean of Y is target of inference:

$$
\mu_{y}=\operatorname{Pr}(Y=1)=\operatorname{Pr}(U>0)=\pi \underbrace{\Phi\left(\mu_{u}^{(1)}\right)}_{\text {respondents }}+(1-\pi) \underbrace{\Phi\left(\mu_{u}^{(0)} / \sqrt{\sigma_{u u}^{(0)}}\right)}_{\text {rest of pop. }}
$$

- Problem: unidentified parameters $=\left\{\mu_{u}^{(0)}, \sigma_{u u}^{(0)}, \rho_{u x}^{(0)}\right\}$

[^11]
PPMM: Theory

- Non-identifiable parameters $\left\{\mu_{u}^{(0)}, \sigma_{u u}^{(0)}, \rho_{u x}^{(0)}\right\}$ are just identified by assumption about selection/response mechanism:

$$
\operatorname{Pr}(S=1 \mid U, X, V)=f\left((1-\phi) X^{*}+\phi U, V\right)
$$

- $X^{*}=\frac{X}{\sqrt{\sigma_{x x}^{(1)}}}=$ rescaled proxy X
- $V=$ additional variables independent of X and U that may be associated with S
- $\phi \in[0,1]$ is a sensitivity parameter (no info in data about it)

PPMM: Theory

- Non-identifiable parameters $\left\{\mu_{u}^{(0)}, \sigma_{u u}^{(0)}, \rho_{u x}^{(0)}\right\}$ are just identified by assumption about selection/response mechanism:

$$
\operatorname{Pr}(S=1 \mid U, X, V)=f\left((1-\phi) X^{*}+\phi U, V\right)
$$

- $X^{*}=\frac{X}{\sqrt{\sigma_{x x}^{(1)}}}=$ rescaled proxy X
- $V=$ additional variables independent of X and U that may be associated with S
- $\phi \in[0,1]$ is a sensitivity parameter (no info in data about it)
- Selected value of ϕ determines selection mechanism:
- $\phi=0 \rightarrow \operatorname{Pr}(S=1 \mid U, X, V)=f\left(X^{*}, V\right) \quad$ Ignorable selection

PPMM: Theory

- Non-identifiable parameters $\left\{\mu_{u}^{(0)}, \sigma_{u u}^{(0)}, \rho_{u x}^{(0)}\right\}$ are just identified by assumption about selection/response mechanism:

$$
\operatorname{Pr}(S=1 \mid U, X, V)=f\left((1-\phi) X^{*}+\phi U, V\right)
$$

- $X^{*}=\frac{X}{\sqrt{\sigma_{x x}^{(1)}}}=$ rescaled proxy X
- $V=$ additional variables independent of X and U that may be associated with S
- $\phi \in[0,1]$ is a sensitivity parameter (no info in data about it)
- Selected value of ϕ determines selection mechanism:
- $\phi=0 \rightarrow \operatorname{Pr}(S=1 \mid U, X, V)=f\left(X^{*}, V\right) \quad$ Ignorable selection
- $\phi=1 \rightarrow \operatorname{Pr}(S=1 \mid U, X, V)=f(U, V) \quad$ "Extremely" Non-ignorable selection

PPMM: Theory

- Non-identifiable parameters $\left\{\mu_{u}^{(0)}, \sigma_{u u}^{(0)}, \rho_{u x}^{(0)}\right\}$ are just identified by assumption about selection/response mechanism:

$$
\operatorname{Pr}(S=1 \mid U, X, V)=f\left((1-\phi) X^{*}+\phi U, V\right)
$$

- $X^{*}=\frac{X}{\sqrt{\sigma_{x x}^{(1)}}}=$ rescaled proxy X
- $V=$ additional variables independent of X and U that may be associated with S
- $\phi \in[0,1]$ is a sensitivity parameter (no info in data about it)
- Selected value of ϕ determines selection mechanism:
- $\phi=0 \rightarrow \operatorname{Pr}(S=1 \mid U, X, V)=f\left(X^{*}, V\right) \quad$ Ignorable selection
- $\phi=1 \rightarrow \operatorname{Pr}(S=1 \mid U, X, V)=f(U, V) \quad$ "Extremely" Non-ignorable selection
- $0<\phi<1 \rightarrow \operatorname{Pr}(S=1 \mid U, X, V)=f\left((1-\phi) X^{*}+\phi U, V\right)$

Non-ignorable selection

PPMM: Theory

For a specified ϕ we can estimate μ_{y} :

$$
\hat{\mu}_{y}=\hat{\pi} \underbrace{\Phi\left(\hat{\mu}_{u}^{(1)}\right)}_{\text {respondents }}+(1-\hat{\pi}) \underbrace{\Phi\left(\hat{\mu}_{u}^{(0)} / \sqrt{\left.\hat{\sigma}_{u u}^{(0)}\right)}\right.}_{\text {rest of pop. }}
$$

where

$$
\begin{aligned}
\hat{\mu}_{u}^{(0)} & =\hat{\mu}_{u}^{(1)}+\left(\frac{\phi+(1-\phi) \hat{\rho}_{u x}^{(1)}}{\phi \hat{\rho}_{u x}^{(1)}+(1-\phi)}\right)\left(\frac{\hat{\mu}_{x}^{(0)}-\hat{\mu}_{x}^{(1)}}{\sqrt{\hat{\sigma}_{x x}^{(1)}}}\right) \\
\hat{\sigma}_{u u}^{(0)} & =1+\left(\frac{\phi+(1-\phi) \hat{\rho}_{u x}^{(1)}}{\phi \hat{\rho}_{u x}^{(1)}+(1-\phi)}\right)^{2}\left(\frac{\hat{\sigma}_{x x}^{(0)}-\hat{\sigma}_{x x}^{(1)}}{\hat{\sigma}_{x x}^{(1)}}\right) \\
\hat{\pi} & =\text { estimated selection fraction }
\end{aligned}
$$

Biserial correlation in selected sample $\left(\hat{\rho}_{u x}^{(1)}\right)$ a very important component

Estimation

"Modified" Maximum Likelihood (MML) estimation:

- $\hat{\pi}=$ selection fraction
- $\left\{\hat{\mu}_{x}^{(1)}, \hat{\sigma}_{x x}^{(1)}, \hat{\mu}_{x}^{(0)}, \hat{\sigma}_{x x}^{(0)}\right\}=$ standard ML estimates (e.g., $\hat{\mu}_{x}^{(1)}=\bar{x}_{\text {resp }}$)
- $\hat{\rho}_{u x}^{(1)}=$ biserial correlation estimated via two-step method (OIsson et al. 1982)
- $\hat{\mu}_{u}^{(1)}=\Phi^{-1}\left(\hat{\mu}_{y}^{(1)}\right)=\Phi^{-1}\left(\bar{y}_{\text {resp }}\right)=$ from two-step method
- Suggested sensitivity analysis: $\phi=\{0,0.5,1\}$

Estimation

"Modified" Maximum Likelihood (MML) estimation:

- $\hat{\pi}=$ selection fraction
- $\left\{\hat{\mu}_{x}^{(1)}, \hat{\sigma}_{x x}^{(1)}, \hat{\mu}_{x}^{(0)}, \hat{\sigma}_{x x}^{(0)}\right\}=$ standard ML estimates (e.g., $\hat{\mu}_{x}^{(1)}=\bar{x}_{\text {resp }}$)
- $\hat{\rho}_{u x}^{(1)}=$ biserial correlation estimated via two-step method (OIsson et al. 1982)
- $\hat{\mu}_{u}^{(1)}=\Phi^{-1}\left(\hat{\mu}_{y}^{(1)}\right)=\Phi^{-1}\left(\bar{y}_{\text {resp }}\right)=$ from two-step method
- Suggested sensitivity analysis: $\phi=\{0,0.5,1\}$

Bayesian approach:

- Non-informative priors for identified parameters
- Incorporates uncertainty in the probit regression model for $Y \mid Z, S=1$ that creates X
- No info in data about ϕ, so take $\phi \sim \operatorname{Uniform}(0,1)$ (other priors are possible)

Outline

(1) The Problem

(2) The Large COVID-19 Surveys

(3) Proxy Pattern-Mixture Model (PPMM) for Binary Outcomes
4. Results from Applying PPMM to COVID-19 Surveys
(5) Summary and Related/Future Work

Available Data: COVID Surveys

Microdata for survey respondents $(S=1)$:

- $Y=$ vaccination status (received at least one dose)
- Missing data treatment follows what the surveys did for reporting:
* Census HPS: If missing, assume "no"
* Delphi-Facebook CTIS: If missing, drop ($\approx 6-7 \%$)
- $Z=$ auxiliary variables
- Census HPS: age, gender, race, ethnicity, education
- Delphi-Facebook CTIS: age, gender, race/ethnicity, education
- Missing data treatment:
* Census HPS: No missing data (singly imputed by Census)
\star Delphi-Facebook CTIS: If missing any, drop ($\approx 15 \%$ additional)
- Sample sizes:
- Census HPS: $n \approx 68,000-80,000$ per wave
- Delphi-Facebook CTIS: $n \approx 160,000-290,000$ per week

Available Data: Population

Aggregate data (\bar{Z}) for rest of population $(S=0)$:

- Source: 2019 American Community Survey
- Weighted estimates from ACS treated as "known"
- Same as using ACS totals for weight adjustments
- Technically, 2019 ACS gives \bar{Z} for the full population, not just nonresponding - but selection fraction is tiny ($N \approx 250$ million, largest $n \approx 250$ thousand)

Population Truth:

- CDC benchmark numbers for vaccine uptake (retroactively corrected)

Estimation Details:

- Ignore sampling weights and treat as non-probability samples
- Bayesian approach with $\phi \sim \operatorname{Uniform}(0,1)$

Percent Vaccinated: Proxy Strength

Percent Vaccinated: PPMM Estimates

Percent Vaccinated: Summary

- PPMM correctly detected direction of selection bias for both surveys in all waves/weeks
- PPMM with $\phi=0.5$ remarkably close to truth for most CTIS weeks
- PPMM credible intervals cover the truth for both surveys in all waves/weeks
- Direct survey estimates only covered truth twice (first two waves of Census HPS)
- PPMM credible intervals much wider than survey intervals despite large sample sizes
- Reflects strength (weakness) of proxy model
- Arguably a good feature: no "Big Data Paradox"!

Percent Vaccine Hesitant

Census HPS:

Once a vaccine to prevent COVID-19 is available to you, would you...
(1) Definitely get a vaccine
(2) Probably get a vaccine
(3) Be unsure about getting a vaccine* [hesitant]
(9) Probably NOT get a vaccine [hesitant]
(5) Definitely NOT get a vaccine [hesitant]

Delphi-Facebook CTIS:

If a vaccine to prevent COVID-19 were offered to you today, would you choose to get vaccinated?
(1) Yes, definitely
(2) Yes, probably
(3) No, probably not [hesitant]
(9) No, definitely not [hesitant]

[^12]
Percent Vaccine Hesitant: Proxy Strength

Percent Vaccine Hesitant: PPMM Estimates

$\phi=0.5 \rightarrow$ hesitancy underestimated by $\approx 9 \%$ for HPS, $\approx 7 \%$ for CTIS

Outline

(1) The Problem

(2) The Large COVID-19 Surveys

(3) Proxy Pattern-Mixture Model (PPMM) for Binary Outcomes
4. Results from Applying PPMM to COVID-19 Surveys
(5) Summary and Related/Future Work

Summary and Related Work

- PPMM provides a sensitivity analysis to assess the potential for non-ignorable nonresponse/selection bias
- $\phi=0$ - ignorable - could be "adjusted away"
- $\phi=1$ - extreme non-ignorable: selection depends only on Y (via U)
- $\phi=0.5$ - could be used as a compromise "estimate" of the bias

Summary and Related Work

- PPMM provides a sensitivity analysis to assess the potential for non-ignorable nonresponse/selection bias
- $\phi=0$ - ignorable - could be "adjusted away"
- $\phi=1$ - extreme non-ignorable: selection depends only on Y (via U)
- $\phi=0.5$ - could be used as a compromise "estimate" of the bias
- Only requires summary statistics for covariates Z for non-selected
- Same information as often used for weighting
- Could be used during data collection to compare potential for bias across a range of Y
- Easiest when population is well-defined and stable

夫 Example when it's not easy: Pre-election polling!*

- Key point: Need strong predictors of Y that are available at population-level

[^13]
Summary and Related Work

- PPMM provides a sensitivity analysis to assess the potential for non-ignorable nonresponse/selection bias
- $\phi=0$ - ignorable - could be "adjusted away"
- $\phi=1$ - extreme non-ignorable: selection depends only on Y (via U)
- $\phi=0.5$ - could be used as a compromise "estimate" of the bias
- Only requires summary statistics for covariates Z for non-selected
- Same information as often used for weighting
- Could be used during data collection to compare potential for bias across a range of Y
- Easiest when population is well-defined and stable

夫 Example when it's not easy: Pre-election polling!*

- Key point: Need strong predictors of Y that are available at population-level
- PPMMs also available for estimating means (including deviations from normality) and linear and probit regression coefficients ${ }^{\dagger}$

[^14]
Future Work / Extensions

Methods development:

- Using the PPMM to generate non-ignorable selection weights
- Extend PPMM for nominal responses
- Extend PPMM to multivariate outcomes
- Adapt PPMM for generalizability of randomized trials in the presence of unmeasured effect modifiers (current R03)

Additional applications:

- Apply PPMM to estimate changes in vaccine uptake (less biased?)
- Apply PPMM to variety of indicators to compare probability-based and opt-in online samples (AAPOR 2024 presentation)

Questions?

Thank you!
andridge.1@osu.edu

Full paper online ahead of print:

Andridge, R.R. (2024). Using proxy pattern-mixture models to explain bias in estimates of COVID-19 vaccine uptake from two large surveys. Journal of the Royal Statistical Society - Series A, https://doi.org/10.1093/jrsssa/qnae005.

References

- Andridge, R.R. (2024). Using proxy pattern-mixture models to explain bias in estimates of COVID-19 vaccine uptake from two large surveys. Journal of the Royal Statistical Society - Series A, Online ahead of print
https://academic.oup.com/jrsssa/advance-article/doi/10.1093/jrsssa/qnae005/7587622.
- Andridge, R.R. and Little, R.J.A. (2011). Proxy-pattern mixture analysis for survey nonresponse. Journal of Official Statistics, 27, 153-180.
- Andridge, R.R., West, B.T., Little, R.J.A., Boonstra, P.S., and Alvarado-Leiton, F. (2019). Indices of non-ignorable selection bias for proportions estimated from non-probability samples. JRSS-C (Applied Statistics), 68, 1465-1483.
- Andridge, R.R. and Little, R.J.A. (2020). Proxy pattern-mixture analysis for a binary survey variable subject to nonresponse. Journal of Official Statistics, 36; 703-728.
- Andridge, R.R. and Thompson, K.J. (2015). Assessing nonresponse bias in a business survey: Proxy pattern-mixture analysis for skewed data. Annals of Applied Statistics, 9(4), 2237-2265.
- Bradley, V.C., Kuriwaki, S., Isakov, M., Sejdinovic, D., Meng, X-L., Flaxman, S. (2021). Unrepresentative big surveys significantly overestimated US vaccine uptake. Nature, 600, 695-700.
- Czajka, J.L. and Beyler, A. (2016). Background Paper: Declining response rates in federal surveys: Trends and implications. Washington: Mathematica Policy Research. Available at: https://aspe.hhs.gov/system/files/pdf/255531/Decliningresponserates.pdf.
- Little, R.J.A., West, B.T., Boonstra, P.S., and Hu, J. (2020). Measures of the degree of departure from ignorable sample selection. Journal of Survey Statistics and Methodology, 8(5), 932-964.
- Meng, X.-L. (2018) Statistical paradises and paradoxes in big data (i): Law of large populations, big data paradox, and the 2016 US presidential election. Annals of Applied Statistics, 12, 685-726.
- Olsson, U., Drasgow, F. and Dorans, N. (1982). The polyserial correlation coefficient. Psychometrika, 47, 337-347.
- West, B.T., and Andridge, R.R. (2023). An evaluation of 2020 pre-election polling estimates using new measures of non-ignorable selection bias. Public Opinion Quarterly, 87; 575-601.
- West, B.T., Little, R.J.A., Andridge, R.R., Boonstra, P., Ware, E.B., Pandit, A., Alvarado-Leiton, F. (2021). Assessing selection bias in regression coefficients estimated from nonprobability samples with applications to genetics and demographic surveys. Annals of Applied Statistics, 15, 1556-1581.
- Yang, Y., Little, R.J. (2021). Spline pattern-mixture models for missing data. Journal of Data Science, 19(1), 75-95.

BONUS SLIDE: How the PPMM Identification Works

Assumed model for U and X given $S:(U, X \mid S=j) \sim$ Bivariate Normal Assumed response mechanism:

$$
\operatorname{Pr}(S=1 \mid U, X, V)=f\left((1-\phi) X^{*}+\phi U, V\right)
$$

If $\phi=0 \rightarrow$ response only depends on X (not U)

- Implies $[U \mid X, S=0]=[U \mid X, S=1]$
- Regression parameters for $[U \mid X, S=0]$ are the same as for $S=1$
- Standard regression estimator (e.g., under MAR assumption)

BONUS SLIDE: How the PPMM Identification Works

Assumed model for U and X given $S:(U, X \mid S=j) \sim$ Bivariate Normal Assumed response mechanism:

$$
\operatorname{Pr}(S=1 \mid U, X, V)=f\left((1-\phi) X^{*}+\phi U, V\right)
$$

If $\phi=0 \rightarrow$ response only depends on $X($ not $U)$

- Implies $[U \mid X, S=0]=[U \mid X, S=1]$
- Regression parameters for $[U \mid X, S=0]$ are the same as for $S=1$
- Standard regression estimator (e.g., under MAR assumption)

If $\phi=1 \rightarrow$ response only depends on U (not X)

- Implies $[X \mid U, S=0]=[X \mid U, S=1]$
- Regression parameters for $[X \mid U, S=0]$ are the same as for $S=1$
- "Inverse regression estimator"

BONUS SLIDE: How the PPMM Identification Works

Assumed model for U and X given $S:(U, X \mid S=j) \sim$ Bivariate Normal Assumed response mechanism:

$$
\operatorname{Pr}(S=1 \mid U, X, V)=f\left((1-\phi) X^{*}+\phi U, V\right)
$$

If $\phi=0 \rightarrow$ response only depends on X (not U)

- Implies $[U \mid X, S=0]=[U \mid X, S=1]$
- Regression parameters for $[U \mid X, S=0]$ are the same as for $S=1$
- Standard regression estimator (e.g., under MAR assumption)

If $\phi=1 \rightarrow$ response only depends on U (not X)

- Implies $[X \mid U, S=0]=[X \mid U, S=1]$
- Regression parameters for $[X \mid U, S=0]$ are the same as for $S=1$
- "Inverse regression estimator"

If $0<\phi<1$, let $W=(1-\phi) X^{*}+\phi U$ and $[X \mid W, S=0]=[X \mid W, S=1]$

[^0]: *https://www.census.gov/data/experimental-data-products/household-pulse-survey.html

[^1]: *https://delphi.cmu.edu/covid19/ctis/

[^2]: * Percent who responded out of all sampled persons

[^3]: * Percent who responded out of all who saw survey invite (logged into FB)

[^4]: * Demographics shown for last wave analyzed of each survey

[^5]: * Limitation: gender used as a binary variable

[^6]: ${ }^{1}$ Limitation: gender collected as a binary variable
 ${ }^{2}$ Limitation: collected gender with >2 categories but have to weight to a source that has gender as a binary variable

[^7]: ${ }^{1}$ Limitation: gender collected as a binary variable
 ${ }^{2}$ Limitation: collected gender with >2 categories but have to weight to a source that has gender as a binary variable

[^8]: ${ }^{1}$ Limitation: gender collected as a binary variable
 ${ }^{2}$ Limitation: collected gender with >2 categories but have to weight to a source that has gender as a binary variable

[^9]: * Andridge and Little 2011, 2020

[^10]: * Andridge and Little 2011, 2020

[^11]: * Andridge and Little 2011, 2020

[^12]: * option available starting in mid-April 2021

[^13]: *West and Andridge 2023

[^14]: *West and Andridge 2023
 ${ }^{\dagger}$ Andridge and Little 2011, Little et al. 2020, Andridge and Thompson 2015, Yang and Little 2021, West et al. 2021

