When "Representative" Surveys Fail: Can a Non-ignorable Missingness Mechanism Explain Bias in Estimates of COVID-19 Vaccine Uptake?

Rebecca Andridge

The Ohio State University College of Public Health

March 13, 2024

Outline

The Problem

- 2 The Large COVID-19 Surveys
- Operation of the second sec
- 4 Results from Applying PPMM to COVID-19 Surveys
- 5 Summary and Related/Future Work

Problems most people immediately think of:

- $\bullet \ \, \text{Big sample size} \to \text{small p-values}$
- Multiple testing
- "Spurious correlations"

Problems most people immediately think of:

- $\bullet \ \, \text{Big sample size} \to \text{small p-values}$
- Multiple testing
- "Spurious correlations"

Another major issue: Selection bias

Also a problem for "Big Surveys" with low response rates

- "Big Data" = Non-probability samples \rightarrow Selection bias
- "Big Surveys" = Probability samples \rightarrow Nonresponse bias

"Big (COVID) Surveys" = "Big Miss"...

(Over-)Estimation of COVID-19 Vaccine Uptake

"Big Data Paradox: The bigger the data, the surer we fool ourselves" (Meng 2018, p.702)

Problem Statement

Goal: Estimate population proportion from probability samples with very low response rates (effectively non-probability samples)

 \rightarrow Proportion having at least one dose of COVID-19 vaccine

Problem Statement

Goal: Estimate population proportion from probability samples with very low response rates (effectively non-probability samples) → Proportion having at least one dose of COVID-19 vaccine

Problem: Potential for bias due to non-ignorable nonresponse

- Ignorable: probability of survey participation depends on *observed characteristics*
- Non-ignorable: probability of survey participation depends at least in part on *unobserved characteristics*
- ightarrow Participation might depend on your vaccine status

Problem Statement

Goal: Estimate population proportion from probability samples with very low response rates (effectively non-probability samples) → Proportion having at least one dose of COVID-19 vaccine

Problem: Potential for bias due to non-ignorable nonresponse

- Ignorable: probability of survey participation depends on *observed characteristics*
- Non-ignorable: probability of survey participation depends at least in part on *unobserved characteristics*
- \rightarrow Participation might depend on your vaccine status

Approach: Use the **Proxy Pattern-Mixture Model (PPMM)** to assess potential nonresponse/selection bias in proportion estimates (Andridge and Little 2020; Andridge et al. 2019) \rightarrow Sensitivity analysis allowing survey participation to depend on vaccine status

Outline

1 The Problem

2 The Large COVID-19 Surveys

Operation of the second sec

4 Results from Applying PPMM to COVID-19 Surveys

5 Summary and Related/Future Work

Census Household Pulse Survey (HPS)*

- Launched April 23, 2020; still ongoing
- Collaboration between 8+ agencies
- Online survey (Qualtrics)
- Repeated cross-sectional probability samples
- Sampling frame: Census Bureau Master Address File where at least one email address or cell phone known
- 1- and then 2-week waves
- n=68,000-80,000 respondents per wave [Jan-May 2021]

Q: Have you received a COVID-19 vaccine? {Yes, No}

^{*} https://www.census.gov/data/experimental-data-products/household-pulse-survey.html

Delphi-Facebook COVID-19 Trends and Impacts Survey (CTIS)*

- Launched April 6, 2020; Ended June 25, 2022
- Both U.S. and Global samples
- Online survey (Qualtrics)
- Repeated cross-sectional probability samples
- Sampling frame: Facebook users 18+ who were active on the platform in the last month
- Daily samples (pooled into weekly waves)
- n=160,000-290,000 respondents per wave [Jan-May 2021]

Q: Have you had a COVID-19 vaccination? {Yes, No, I don't know}

^{*}https://delphi.cmu.edu/covid19/ctis/

Big Surveys, Small Response Rates

Census HPS Response Rates*

 $^{^{\}ast} \mbox{Percent}$ who responded out of all sampled persons

Big Surveys, Small Response Rates

Delphi-Facebook Cooperation Rates*

 * Percent who responded out of all who saw survey invite (logged into FB)

Compare to Traditional "Big Survey" Response Rates

Czajka and Beyler 2016

 Age^*

 $^{^{*}}$ Demographics shown for last wave analyzed of each survey

\mathbf{Gender}^*

^{*}Limitation: gender used as a binary variable

Education

Race and Ethnicity

- Adjust sample weights to make respondents "look like" population
 - Upweight male, younger, lower education, non-white

- Adjust sample weights to make respondents "look like" population
 - Upweight male, younger, lower education, non-white
- Both surveys did this, but with limited demographic information:
 - ► Census HPS: age, gender¹, race/ethnicity, education, state
 - Delphi-Facebook: age, gender²
 - ▶ Population data sources: American Community Survey, Current Population Survey

¹Limitation: gender collected as a binary variable

 $^{^2}$ Limitation: collected gender with >2 categories but have to weight to a source that has gender as a binary variable

- Adjust sample weights to make respondents "look like" population
 - Upweight male, younger, lower education, non-white
- Both surveys did this, but with limited demographic information:
 - ► Census HPS: age, gender¹, race/ethnicity, education, state
 - Delphi-Facebook: age, gender²
 - ► Population data sources: American Community Survey, Current Population Survey
- Weighting makes respondents look like the population with respect to the weighting variables
- Assumes that two people of the same (age, gender, race/ethnicity, education) or (age, gender) are **interchangeable**, one who participated and one who did not

¹Limitation: gender collected as a binary variable

 $^{^2}$ Limitation: collected gender with >2 categories but have to weight to a source that has gender as a binary variable

- Adjust sample weights to make respondents "look like" population
 - Upweight male, younger, lower education, non-white
- Both surveys did this, but with limited demographic information:
 - ► Census HPS: age, gender¹, race/ethnicity, education, state
 - Delphi-Facebook: age, gender²
 - ► Population data sources: American Community Survey, Current Population Survey
- Weighting makes respondents look like the population with respect to the weighting variables
- Assumes that two people of the same (age, gender, race/ethnicity, education) or (age, gender) are **interchangeable**, one who participated and one who did not

Do we believe this assumption? In the context of COVID?

¹Limitation: gender collected as a binary variable

 $^{^2}$ Limitation: collected gender with >2 categories but have to weight to a source that has gender as a binary variable

Weighting Helped Somewhat...But Not Enough!

Weighted estimates closer to truth, but still biased Let's see if the PPMM can do better!

Outline

1 The Problem

2 The Large COVID-19 Surveys

3 Proxy Pattern-Mixture Model (PPMM) for Binary Outcomes

- 4 Results from Applying PPMM to COVID-19 Surveys
- 5 Summary and Related/Future Work

- Y = binary variable of interest, only available for respondents
 - Individual has received 1+ dose of vaccine
- Z = auxiliary variables, available for respondents and in aggregate for population (\bar{Z})
 - Age, gender, race/ethnicity, education (HPS)
- $\bullet \ S = {\rm indicator}$ for unit selected ${\rm and}$ responded

- Y = binary variable of interest, only available for respondents
 - Individual has received 1+ dose of vaccine
- Z = auxiliary variables, available for respondents and in aggregate for population (\bar{Z})
 - Age, gender, race/ethnicity, education (HPS)
- $\bullet \ S = {\rm indicator}$ for unit selected ${\rm and}$ responded
- $\bullet \ U =$ underlying normally distributed unobserved latent variable
 - Y = 1 when U > 0

- Y = binary variable of interest, only available for respondents
 - Individual has received 1+ dose of vaccine
- Z = auxiliary variables, available for respondents and in aggregate for population (\bar{Z})
 - Age, gender, race/ethnicity, education (HPS)
- $\bullet \ S = {\rm indicator}$ for unit selected ${\rm and}$ responded
- U = underlying normally distributed unobserved latent variable
 Y = 1 when U > 0
- X = "proxy" for Y, based on Z
 - ▶ Constructed from probit regression: $P(Y = 1|Z, S = 1) = \Phi(\alpha_0 + \alpha Z)$
 - Available at individual-level for selected/respondents: $X = \hat{\alpha}_0 + \hat{\alpha}Z$
 - Available in aggregate for rest of population: $\bar{X} = \hat{\alpha}_0 + \hat{\alpha}\bar{Z}$
 - $\blacktriangleright \textit{ Proxy strength} = \mathsf{Biserial } \mathsf{Corr}(Y, X | S = 1) = \mathsf{Corr}(U, X | S = 1)$

Basic idea:

• We can measure the degree of bias in the proxy X (known for population!)

Basic idea:

- We can measure the degree of bias in the proxy X (known for population!)
- If Y is correlated with X, then this tells you something about the *potential* bias in Y

Basic idea:

- We can measure the degree of bias in the proxy X (known for population!)
- If Y is correlated with X, then this tells you something about the *potential* bias in Y

General approach:

- Use pattern-mixture models to specify f(Y, X, S) = f(Y, X|S)f(S)
- Only f(Y, X|S = 1) identifiable (and f(X|S = 0))
- Make explicit, untestable assumption(s) about S to identify $f(Y\!,\!X|S=0)$
- ${\ensuremath{\,\circ\,}}$ Creates sensitivity analysis to assess range of bias under different assumptions about S

Basic idea:

- We can measure the degree of bias in the proxy X (known for population!)
- If Y is correlated with X, then this tells you something about the *potential* bias in Y

General approach:

- Use pattern-mixture models to specify f(Y, X, S) = f(Y, X|S)f(S)
- Only f(Y, X | S = 1) identifiable (and f(X | S = 0))
- Make explicit, untestable assumption(s) about S to identify f(Y, X|S = 0)
- ${\ensuremath{\,\circ\,}}$ Creates sensitivity analysis to assess range of bias under different assumptions about S

Trick for convenience:

 $\bullet~$ Use latent U instead of binary Y

• Assume a proxy pattern-mixture model^{*} for U and X given S:

$$(U, X|S = j) \sim N_2 \left(\begin{bmatrix} \mu_u^{(j)} \\ \mu_x^{(j)} \end{bmatrix}, \begin{bmatrix} \sigma_{uu}^{(j)} & \rho_{ux}^{(j)} \sqrt{\sigma_{uu}^{(j)} \sigma_{xx}^{(j)}} \\ \rho_{ux}^{(j)} \sqrt{\sigma_{uu}^{(j)} \sigma_{xx}^{(j)}} & \sigma_{xx}^{(j)} \end{bmatrix} \right)$$
$$S \sim \text{Bernoulli}(\pi)$$

• WLOG set $\sigma_{uu}^{(1)} = 1$ (latent variable scale)

^{*} Andridge and Little 2011, 2020

• Assume a proxy pattern-mixture model^{*} for U and X given S:

$$(U, X|S = j) \sim N_2 \left(\begin{bmatrix} \mu_u^{(j)} \\ \mu_x^{(j)} \end{bmatrix}, \begin{bmatrix} \sigma_{uu}^{(j)} & \rho_{ux}^{(j)} \sqrt{\sigma_{uu}^{(j)} \sigma_{xx}^{(j)}} \\ \rho_{ux}^{(j)} \sqrt{\sigma_{uu}^{(j)} \sigma_{xx}^{(j)}} & \sigma_{xx}^{(j)} \end{bmatrix} \right)$$
$$S \sim \text{Bernoulli}(\pi)$$

• WLOG set $\sigma_{uu}^{(1)} = 1$ (latent variable scale)

• Marginal mean of Y is target of inference:

$$\mu_y = \Pr(Y=1) = \Pr(U>0) = \pi \underbrace{\Phi\left(\mu_u^{(1)}\right)}_{\text{respondents}} + (1-\pi) \underbrace{\Phi\left(\mu_u^{(0)}/\sqrt{\sigma_{uu}^{(0)}}\right)}_{\text{rest of pop.}}$$

^{*}Andridge and Little 2011, 2020

• Assume a proxy pattern-mixture model^{*} for U and X given S:

$$(U, X|S = j) \sim N_2 \left(\begin{bmatrix} \mu_u^{(j)} \\ \mu_x^{(j)} \end{bmatrix}, \begin{bmatrix} \sigma_{uu}^{(j)} & \rho_{ux}^{(j)} \sqrt{\sigma_{uu}^{(j)} \sigma_{xx}^{(j)}} \\ \rho_{ux}^{(j)} \sqrt{\sigma_{uu}^{(j)} \sigma_{xx}^{(j)}} & \sigma_{xx}^{(j)} \end{bmatrix} \right)$$
$$S \sim \text{Bernoulli}(\pi)$$

• WLOG set $\sigma_{uu}^{(1)} = 1$ (latent variable scale)

• Marginal mean of Y is target of inference:

$$\mu_y = \Pr(Y=1) = \Pr(U>0) = \pi \underbrace{\Phi\left(\mu_u^{(1)}\right)}_{\text{respondents}} + (1-\pi) \underbrace{\Phi\left(\mu_u^{(0)}/\sqrt{\sigma_{uu}^{(0)}}\right)}_{\text{rest of pop.}}$$

• Problem: unidentified parameters = $\left\{\mu_u^{(0)}, \sigma_{uu}^{(0)}, \rho_{ux}^{(0)}\right\}$

^{*} Andridge and Little 2011, 2020

• Non-identifiable parameters $\{\mu_u^{(0)}, \sigma_{uu}^{(0)}, \rho_{ux}^{(0)}\}$ are just identified by assumption about selection/response mechanism:

$$\Pr(S = 1 | U, X, V) = f((1 - \phi)X^* + \phi U, V)$$

•
$$X^* = \frac{X}{\sqrt{\sigma_{xx}^{(1)}}} = \text{rescaled proxy } X$$

- \blacktriangleright V = additional variables independent of X and U that may be associated with S
- $\phi \in [0,1]$ is a sensitivity parameter (no info in data about it)

• Non-identifiable parameters $\{\mu_u^{(0)}, \sigma_{uu}^{(0)}, \rho_{ux}^{(0)}\}\$ are just identified by assumption about selection/response mechanism:

$$\Pr(S = 1 | U, X, V) = f((1 - \phi)X^* + \phi U, V)$$

•
$$X^* = \frac{X}{\sqrt{\sigma_{xx}^{(1)}}} = \text{rescaled proxy } X$$

- V = additional variables independent of X and U that may be associated with S
- $\phi \in [0,1]$ is a sensitivity parameter (no info in data about it)
- Selected value of ϕ determines selection mechanism:
 - $\phi = 0 \rightarrow \Pr(S = 1 | U, X, V) = f(X^*, V)$ Ignorable selection

• Non-identifiable parameters $\{\mu_u^{(0)}, \sigma_{uu}^{(0)}, \rho_{ux}^{(0)}\}$ are just identified by assumption about selection/response mechanism:

$$\Pr(S = 1 | U, X, V) = f((1 - \phi)X^* + \phi U, V)$$

•
$$X^* = \frac{X}{\sqrt{\sigma_{xx}^{(1)}}} = \text{rescaled proxy } X$$

- V = additional variables independent of X and U that may be associated with S
- $\phi \in [0,1]$ is a sensitivity parameter (no info in data about it)
- Selected value of ϕ determines selection mechanism:
 - ▶ $\phi = 0 \rightarrow \Pr(S = 1 | U, X, V) = f(X^*, V)$ Ignorable selection
 - $\phi = 1 \rightarrow \Pr(S = 1 | U, X, V) = f(U, V)$ "Extremely" Non-ignorable selection

• Non-identifiable parameters $\{\mu_u^{(0)}, \sigma_{uu}^{(0)}, \rho_{ux}^{(0)}\}$ are just identified by assumption about selection/response mechanism:

$$\Pr(S = 1 | U, X, V) = f((1 - \phi)X^* + \phi U, V)$$

•
$$X^* = \frac{X}{\sqrt{\sigma_{xx}^{(1)}}} = \text{rescaled proxy } X$$

- V = additional variables independent of X and U that may be associated with S
- $\phi \in [0,1]$ is a sensitivity parameter (no info in data about it)
- Selected value of ϕ determines selection mechanism:
 - ▶ $\phi = 0 \rightarrow \Pr(S = 1 | U, X, V) = f(X^*, V)$ Ignorable selection
 - $\phi = 1 \rightarrow \Pr(S = 1 | U, X, V) = f(U, V)$ "Extremely" Non-ignorable selection
 - ▶ $0 < \phi < 1 \rightarrow \Pr(S = 1 | U, X, V) = f((1 \phi)X^* + \phi U, V)$ Non-ignorable selection

For a specified ϕ we can estimate μ_y :

$$\hat{\mu}_y = \hat{\pi} \underbrace{\Phi\left(\hat{\mu}_u^{(1)}\right)}_{\text{respondents}} + (1 - \hat{\pi}) \underbrace{\Phi\left(\hat{\mu}_u^{(0)} / \sqrt{\hat{\sigma}_{uu}^{(0)}}\right)}_{\text{rest of pop.}}$$

where

$$\begin{split} \hat{\mu}_{u}^{(0)} &= \hat{\mu}_{u}^{(1)} + \left(\frac{\phi + (1-\phi)\hat{\rho}_{ux}^{(1)}}{\phi\hat{\rho}_{ux}^{(1)} + (1-\phi)}\right) \left(\frac{\hat{\mu}_{x}^{(0)} - \hat{\mu}_{x}^{(1)}}{\sqrt{\hat{\sigma}_{xx}^{(1)}}}\right) \\ \hat{\sigma}_{uu}^{(0)} &= 1 + \left(\frac{\phi + (1-\phi)\hat{\rho}_{ux}^{(1)}}{\phi\hat{\rho}_{ux}^{(1)} + (1-\phi)}\right)^{2} \left(\frac{\hat{\sigma}_{xx}^{(0)} - \hat{\sigma}_{xx}^{(1)}}{\hat{\sigma}_{xx}^{(1)}}\right) \\ \hat{\pi} &= \text{estimated selection fraction} \end{split}$$

Biserial correlation in selected sample $(\hat{
ho}_{ux}^{(1)})$ a very important component

Estimation

"Modified" Maximum Likelihood (MML) estimation:

• $\hat{\pi} = \text{selection fraction}$

•
$$\left\{\hat{\mu}_{x}^{(1)}, \hat{\sigma}_{xx}^{(1)}, \hat{\mu}_{x}^{(0)}, \hat{\sigma}_{xx}^{(0)}\right\} = \text{standard ML estimates (e.g., } \hat{\mu}_{x}^{(1)} = \bar{x}_{resp}$$
)

- $\hat{
 ho}_{ux}^{(1)}=$ biserial correlation estimated via two-step method (Olsson et al. 1982)
- $\hat{\mu}_{u}^{(1)}=\Phi^{-1}(\hat{\mu}_{y}^{(1)})=\Phi^{-1}(\bar{y}_{resp})=$ from two-step method
- Suggested sensitivity analysis: $\phi = \{0, 0.5, 1\}$

Estimation

"Modified" Maximum Likelihood (MML) estimation:

• $\hat{\pi} = \text{selection fraction}$

•
$$\left\{\hat{\mu}_{x}^{(1)}, \hat{\sigma}_{xx}^{(1)}, \hat{\mu}_{x}^{(0)}, \hat{\sigma}_{xx}^{(0)}\right\} = \text{standard ML estimates (e.g., } \hat{\mu}_{x}^{(1)} = \bar{x}_{resp})$$

- $\hat{
 ho}_{ux}^{(1)}=$ biserial correlation estimated via two-step method (Olsson et al. 1982)
- $\hat{\mu}_{u}^{(1)}=\Phi^{-1}(\hat{\mu}_{y}^{(1)})=\Phi^{-1}(\bar{y}_{resp})=$ from two-step method
- Suggested sensitivity analysis: $\phi = \{0, 0.5, 1\}$

Bayesian approach:

- Non-informative priors for identified parameters
- Incorporates uncertainty in the probit regression model for Y|Z, S = 1 that creates X
- No info in data about $\phi,$ so take $\phi \sim \mathrm{Uniform}(0,1)$ (other priors are possible)

Outline

1 The Problem

- 2 The Large COVID-19 Surveys
- Proxy Pattern-Mixture Model (PPMM) for Binary Outcomes

4 Results from Applying PPMM to COVID-19 Surveys

5 Summary and Related/Future Work

Available Data: COVID Surveys

Microdata for survey respondents (S = 1):

- Y = vaccination status (received at least one dose)
 - Missing data treatment follows what the surveys did for reporting:
 - ★ Census HPS: If missing, assume "no"
 - ★ Delphi-Facebook CTIS: If missing, drop (≈6-7%)
- Z = auxiliary variables
 - Census HPS: age, gender, race, ethnicity, education
 - Delphi-Facebook CTIS: age, gender, race/ethnicity, education
 - Missing data treatment:
 - * Census HPS: No missing data (singly imputed by Census)
 - * Delphi-Facebook CTIS: If missing any, drop (\approx 15% additional)
- Sample sizes:
 - Census HPS: $n \approx$ 68,000-80,000 per wave
 - ▶ Delphi-Facebook CTIS: $n \approx 160,000$ -290,000 per week

Available Data: Population

Aggregate data (\overline{Z}) for rest of population (S = 0):

- Source: 2019 American Community Survey
 - Weighted estimates from ACS treated as "known"
 - Same as using ACS totals for weight adjustments
- Technically, 2019 ACS gives \bar{Z} for the full population, not just nonresponding but selection fraction is tiny

 $(N \approx 250 \text{ million, largest } n \approx 250 \text{ thousand})$

Population Truth:

• CDC benchmark numbers for vaccine uptake (retroactively corrected)

Estimation Details:

- Ignore sampling weights and treat as non-probability samples
- Bayesian approach with $\phi \sim \mathsf{Uniform}(0,1)$

Percent Vaccinated: Proxy Strength

Percent Vaccinated: PPMM Estimates

- PPMM correctly detected direction of selection bias for both surveys in all waves/weeks
- PPMM with $\phi=0.5$ remarkably close to truth for most CTIS weeks
- PPMM credible intervals cover the truth for both surveys in all waves/weeks
 - Direct survey estimates only covered truth twice (first two waves of Census HPS)
- PPMM credible intervals much wider than survey intervals despite large sample sizes
 - Reflects strength (weakness) of proxy model
 - Arguably a good feature: no "Big Data Paradox"!

Percent Vaccine Hesitant

Census HPS:

Once a vaccine to prevent COVID-19 is available to you, would you...

- Definitely get a vaccine
- Probably get a vaccine
- Be unsure about getting a vaccine^{*} [hesitant]
- Probably NOT get a vaccine [hesitant]
- O Definitely NOT get a vaccine [hesitant]

Delphi-Facebook CTIS:

If a vaccine to prevent COVID-19 were offered to you today, would you choose to get vaccinated?

- Yes, definitely
- 2 Yes, probably
- In the second second
- No, definitely not [hesitant]

^{*} option available starting in mid-April 2021

Percent Vaccine Hesitant: Proxy Strength

Percent Vaccine Hesitant: PPMM Estimates

 $\phi=0.5 \rightarrow$ hesitancy underestimated by \approx 9% for HPS, \approx 7% for CTIS

Outline

1 The Problem

- 2 The Large COVID-19 Surveys
- Proxy Pattern-Mixture Model (PPMM) for Binary Outcomes
- 4 Results from Applying PPMM to COVID-19 Surveys
- 5 Summary and Related/Future Work

Summary and Related Work

- PPMM provides a sensitivity analysis to assess the potential for non-ignorable nonresponse/selection bias
 - $\phi = 0$ ignorable could be "adjusted away"
 - $\phi = 1$ extreme non-ignorable: selection depends only on Y (via U)
 - $\phi=0.5$ could be used as a compromise "estimate" of the bias

Summary and Related Work

- PPMM provides a sensitivity analysis to assess the potential for non-ignorable nonresponse/selection bias
 - $\blacktriangleright \ \phi = 0$ ignorable could be "adjusted away"
 - $\phi = 1$ extreme non-ignorable: selection depends only on Y (via U)
 - $\phi=0.5$ could be used as a compromise "estimate" of the bias
- Only requires summary statistics for covariates Z for non-selected
 - Same information as often used for weighting
 - \blacktriangleright Could be used during data collection to compare potential for bias across a range of Y
 - Easiest when population is well-defined and stable
 - ★ Example when it's *not* easy: Pre-election polling!*
 - \blacktriangleright Key point: Need strong predictors of Y that are available at population-level

^{*}West and Andridge 2023

Summary and Related Work

- PPMM provides a sensitivity analysis to assess the potential for non-ignorable nonresponse/selection bias
 - $\phi = 0$ ignorable could be "adjusted away"
 - $\phi = 1$ extreme non-ignorable: selection depends only on Y (via U)
 - $\phi=0.5$ could be used as a compromise "estimate" of the bias
- Only requires summary statistics for covariates Z for non-selected
 - Same information as often used for weighting
 - \blacktriangleright Could be used during data collection to compare potential for bias across a range of Y
 - Easiest when population is well-defined and stable
 - ★ Example when it's *not* easy: Pre-election polling!*
 - \blacktriangleright Key point: Need strong predictors of Y that are available at population-level
- PPMMs also available for estimating means (including deviations from normality) and linear and probit regression coefficients[†]

^{*}West and Andridge 2023

 $^{^\}dagger$ Andridge and Little 2011, Little et al. 2020, Andridge and Thompson 2015, Yang and Little 2021, West et al. 2021

Future Work / Extensions

Methods development:

- Using the PPMM to generate non-ignorable selection weights
- Extend PPMM for nominal responses
- Extend PPMM to multivariate outcomes
- Adapt PPMM for generalizability of randomized trials in the presence of unmeasured effect modifiers (current R03)

Additional applications:

- Apply PPMM to estimate changes in vaccine uptake (less biased?)
- Apply PPMM to variety of indicators to compare probability-based and opt-in online samples (AAPOR 2024 presentation)

Thank you! andridge.1@osu.edu

Full paper online ahead of print:

Andridge, R.R. (2024). Using proxy pattern-mixture models to explain bias in estimates of COVID-19 vaccine uptake from two large surveys. Journal of the Royal Statistical Society – Series A, https://doi.org/10.1093/jrsssa/qnae005.

References

- Andridge, R.R. (2024). Using proxy pattern-mixture models to explain bias in estimates of COVID-19 vaccine uptake from two large surveys. Journal of the Royal Statistical Society Series A, Online ahead of print https://academic.oup.com/jrsssa/advance-article/doi/10.1093/jrsssa/qnae005/7587622.
- Andridge, R.R. and Little, R.J.A. (2011). Proxy-pattern mixture analysis for survey nonresponse. Journal of Official Statistics, 27, 153-180.
- Andridge, R.R., West, B.T., Little, R.J.A., Boonstra, P.S., and Alvarado-Leiton, F. (2019). Indices of non-ignorable selection bias for proportions estimated from non-probability samples. JRSS-C (Applied Statistics), 68, 1465-1483.
- Andridge, R.R. and Little, R.J.A. (2020). Proxy pattern-mixture analysis for a binary survey variable subject to nonresponse. Journal of Official Statistics, 36; 703-728.
- Andridge, R.R. and Thompson, K.J. (2015). Assessing nonresponse bias in a business survey: Proxy pattern-mixture analysis for skewed data. Annals of Applied Statistics, 9(4), 2237-2265.
- Bradley, V.C., Kuriwaki, S., Isakov, M., Sejdinovic, D., Meng, X-L., Flaxman, S. (2021). Unrepresentative big surveys significantly overestimated US vaccine uptake. Nature, 600, 695-700.
- Czajka, J.L. and Beyler, A. (2016). Background Paper: Declining response rates in federal surveys: Trends and implications. Washington: Mathematica Policy Research. Available at: https://aspe.hhs.gov/system/files/pdf/255531/Decliningresponserates.pdf.
- Little, R.J.A., West, B.T., Boonstra, P.S., and Hu, J. (2020). Measures of the degree of departure from ignorable sample selection. Journal of Survey Statistics and Methodology, 8(5), 932-964.
- Meng, X.-L. (2018) Statistical paradises and paradoxes in big data (i): Law of large populations, big data paradox, and the 2016 US presidential election. Annals of Applied Statistics, 12, 685-726.
- Olsson, U., Drasgow, F. and Dorans, N. (1982). The polyserial correlation coefficient. Psychometrika, 47, 337-347.
- West, B.T., and Andridge, R.R. (2023). An evaluation of 2020 pre-election polling estimates using new measures of non-ignorable selection bias. Public Opinion Quarterly, 87; 575-601.
- West, B.T., Little, R.J.A., Andridge, R.R., Boonstra, P., Ware, E.B., Pandit, A., Alvarado-Leiton, F. (2021). Assessing selection bias in regression coefficients estimated from nonprobability samples with applications to genetics and demographic surveys. Annals of Applied Statistics, 15, 1556-1581.
- Yang, Y., Little, R.J. (2021). Spline pattern-mixture models for missing data. Journal of Data Science, 19(1), 75-95.

BONUS SLIDE: How the PPMM Identification Works

Assumed model for U and X given S: $(U,X|S=j)\sim$ Bivariate Normal Assumed response mechanism:

 $\Pr(S = 1 | U, X, V) = f((1 - \phi)X^* + \phi U, V)$

If $\phi = 0 \rightarrow$ response only depends on X (not U)

- Implies $\left[U|X,S=0\right]=\left[U|X,S=1\right]$
- Regression parameters for $\left[U | X, S = 0 \right]$ are the same as for S = 1
- Standard regression estimator (e.g., under MAR assumption)

BONUS SLIDE: How the PPMM Identification Works

Assumed model for U and X given S: $(U,X|S=j)\sim$ Bivariate Normal Assumed response mechanism:

 $\Pr(S = 1 | U, X, V) = f((1 - \phi)X^* + \phi U, V)$

If
$$\phi=0
ightarrow$$
 response only depends on X (not U)

• Implies
$$[U|X, S = 0] = [U|X, S = 1]$$

- \bullet Regression parameters for $\left[U|X,S=0\right]$ are the same as for S=1
- Standard regression estimator (e.g., under MAR assumption)

If $\phi = 1 \rightarrow$ response only depends on U (not X)

- Implies $\left[X|U,S=0\right]=\left[X|U,S=1\right]$
- \bullet Regression parameters for $\left[X|U,S=0\right]$ are the same as for S=1
- "Inverse regression estimator"

BONUS SLIDE: How the PPMM Identification Works

Assumed model for U and X given S: $(U,X|S=j)\sim$ Bivariate Normal Assumed response mechanism:

 $\Pr(S = 1 | U, X, V) = f((1 - \phi)X^* + \phi U, V)$

If
$$\phi=0
ightarrow$$
 response only depends on X (not U)

• Implies
$$[U|X, S = 0] = [U|X, S = 1]$$

- $\bullet\,$ Regression parameters for [U|X,S=0] are the same as for S=1
- Standard regression estimator (e.g., under MAR assumption)

If $\phi = 1 \rightarrow$ response only depends on U (not X)

- Implies $\left[X|U,S=0\right]=\left[X|U,S=1\right]$
- \bullet Regression parameters for $\left[X|U,S=0\right]$ are the same as for S=1
- "Inverse regression estimator"

If $0 < \phi < 1$, let $W = (1 - \phi)X^* + \phi U$ and [X|W, S = 0] = [X|W, S = 1]