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Outline
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“Big Data": Friend or Foe?
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“Big Data": Friend or Foe?
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“Big Data”: Friend or Foe?

Problems most people immediately think of:
@ Big sample size — small p-values
@ Multiple testing

@ “Spurious correlations”
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“Big Data”: Friend or Foe?

Problems most people immediately think of: RAISE YOUR HAND

IF YOURE FAMILIAR
LJ!TH SELECTION BIAS.

A5 YOU CAN SEE,
IT'5 A TERM MOST

@ Big sample size — small p-values

@ Multiple testing

PEOPLE KNOW...

Also a problem for “Big Surveys” with low response rates

@ “Spurious correlations”

Another major issue: Selection bias

o "Big Data” = Non-probability samples — Selection bias
@ "Big Surveys” = Probability samples — Nonresponse bias
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“Big (COVID) Surveys” = “Big Miss”
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~-« Keysurveys overestimate COVID-19
. vaccination rates in the USA

CORONAVIRUS  MATHEMATICAL, PHYSICAL AND LIFE SCIENCES  RESEARCH  SCIENCE

SHAETHS - Estimates of COVID-19 vaccine uptake in the USA based on large surveys that are used to

quide policy-making decisions tend to overestimate the number of vaccinated individuals,
research published in Nature suggests.

Published study: Bradley et al. 2021, Nature
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(Over-)Estimation of COVID-19 Vaccine Uptake

804
Delphi-Facebook CTIS

Census HPS

Truth
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404
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Date

“Big Data Paradox: The bigger the data, the surer we fool ourselves” (Meng 2018, p.702)
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Problem Statement

Goal: Estimate population proportion from probability samples with very low response
rates (effectively non-probability samples)
— Proportion having at least one dose of COVID-19 vaccine
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Problem Statement

Goal: Estimate population proportion from probability samples with very low response
rates (effectively non-probability samples)
— Proportion having at least one dose of COVID-19 vaccine

Problem: Potential for bias due to non-ignorable nonresponse

@ Ignorable: probability of survey participation depends on
observed characteristics

@ Non-ignorable: probability of survey participation depends
at least in part on unobserved characteristics

— Participation might depend on your vaccine status

Approach: Use the Proxy Pattern-Mixture Model (PPMM) to assess potential
nonresponse/selection bias in proportion estimates (andridge and Little 2020; Andridge et al. 2019)
— Sensitivity analysis allowing survey participation to depend on vaccine status
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Outline

© The Large COVID-19 Surveys
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Census Household Pulse Survey (HPS)*

@ Launched April 23, 2020; still ongoing

@ Collaboration between 84 agencies

@ Online survey (Qualtrics)

@ Repeated cross-sectional probability samples IIJ.

@ Sampling frame: Census Bureau Master Address File i
where at least one email address or cell phone known DATA

@ 1- and then 2-week waves Cglifidssﬁt§®

@ n=68,000-80,000 respondents per wave [Jan-May 2021] e— B2l

Q: Have you received a COVID-19 vaccine? {Yes, No}

* https://www.census.gov/data/experimental-data-products/household-pulse-survey.html
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Delphi-Facebook COVID-19 Trends and Impacts Survey (CTIS)*

Launched April 6, 2020; Ended June 25, 2022
Both U.S. and Global samples

Online survey (Qualtrics)

Repeated cross-sectional probability samples

Sampling frame: Facebook users 18+ who were active
on the platform in the last month

Daily samples (pooled into weekly waves)
e n=160,000-290,000 respondents per wave [Jan-May 2021]

Q: Have you had a COVID-19 vaccination? {Yes, No, | don't know}

* https://delphi.cmu.edu/covid19/ctis/
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Big Surveys, Small Response Rates

Census HPS Response Rates*
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* Percent who responded out of all sampled persons
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Big Surveys, Small Response Rates
Delphi-Facebook Cooperation Rates*
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Date

Percent who responded out of all who saw survey invite (logged into FB)

*




Compare to Traditional “Big Survey” Response Rates
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COVID Surveys: Respondents don't resemble Population

*

Age
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* Demographics shown for last wave analyzed of each survey
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COVID Surveys: Respondents don't resemble Population

sk
Gender
Census HPS Delphi-Facebook CTIS
1.00 1.00
0.75 0.75
s s
g_u,so W vale E_W W vale
g I remate g I Femate
0.25 0.25
0.00 0.00
Population  Survey Population  Survey

* Limitation: gender used as a binary variable
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COVID Surveys: Respondents don't resemble Population
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COVID Surveys: Respondents don't resemble Population

Race and Ethnicity
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Solution: Nonresponse Weighting Adjustments

@ Adjust sample weights to make respondents “look like" population
» Upweight male, younger, lower education, non-white
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. . . . .
Limitation: gender collected as a binary variable

Limitation: collected gender with >2 categories but have to weight to a source that has gender as a binary variable
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Solution: Nonresponse Weighting Adjustments

@ Adjust sample weights to make respondents “look like" population
» Upweight male, younger, lower education, non-white

@ Both surveys did this, but with limited demographic information:

» Census HPS: age, gender?, race/ethnicity, education, state
» Delphi-Facebook: age, gender?
» Population data sources: American Community Survey, Current Population Survey

@ Weighting makes respondents look like the population with respect to the weighting
variables

@ Assumes that two people of the same (age, gender, race/ethnicity, education) or (age,
gender) are interchangeable, one who participated and one who did not

Do we believe this assumption? In the context of COVID?

. . . . .
Limitation: gender collected as a binary variable

Limitation: collected gender with >2 categories but have to weight to a source that has gender as a binary variable
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Weighting Helped Somewhat. .. But Not Enough!

Census HPS

Delphi-Facebook CTIS

804

Percent Vaccinated
B (2]
o o

n
o
L

04

- Unweighted

A

A-4AUnweighted
Weighted

T T T T T
Jan 2021 Feb 2021 Mar 2021  Apr2021 May 2021 Jan

Date

Weighted estimates closer to truth, but still biased

Let's see if the PPMM can do better!

I2021 Feb I2021 Mar I2021 Apr I2021 May I2021
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Outline

© Proxy Pattern-Mixture Model (PPMM) for Binary Outcomes
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PPMM for Binary Outcomes

@ Y = binary variable of interest, only available for respondents
» Individual has received 14 dose of vaccine

e Z = auxiliary variables, available for respondents and in aggregate for population (Z)
» Age, gender, race/ethnicity, education (HPS)

@ S = indicator for unit selected and responded
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PPMM for Binary Outcomes

@ Y = binary variable of interest, only available for respondents
» Individual has received 14 dose of vaccine

@ Z = auxiliary variables, available for respondents and for population (Z)
» Age, gender, race/ethnicity, education (HPS)

@ S = indicator for unit selected and responded

@ U = underlying normally distributed unobserved latent variable
» Y=1whenU >0

@ X = "proxy" for Y, based on Z
» Constructed from probit regression: P(Y =1|Z,5 =1) = ®(ag + aZ)
» Available at individual-level for selected/respondents: X = &g + &Z
» Auvailable in for rest of population: X = a9 + &Z

» Proxy strength = Biserial Corr(Y, X|S =1) = Corr(U, X|S = 1)
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PPMM for Binary Outcomes

Basic idea:

@ We can measure the degree of bias in the proxy X (known for population!)
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PPMM for Binary Outcomes

Basic idea:
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General approach:
@ Use pattern-mixture models to specify f(Y, X, S) = f(Y, X|S)f(S)
e Only f(Y, X|S = 1) identifiable (and f(X|S = 0))
@ Make explicit, untestable assumption(s) about S to identify f(Y, X|S = 0)

o Creates sensitivity analysis to assess range of bias under different assumptions about .S
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PPMM for Binary Outcomes

Basic idea:
@ We can measure the degree of bias in the proxy X (known for population!)
o If Y is correlated with X, then this tells you something about the potential bias in Y

General approach:
@ Use pattern-mixture models to specify f(Y, X, S) = f(Y, X|S)f(S)
e Only f(Y, X|S = 1) identifiable (and f(X|S = 0))
@ Make explicit, untestable assumption(s) about S to identify f(Y, X|S = 0)

o Creates sensitivity analysis to assess range of bias under different assumptions about .S

Trick for convenience:
@ Use latent U instead of binary Y
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PPMM: Theory

@ Assume a proxy pattern-mixture model* for U and X given S:

(4) (4) (J)
. My Ouu Puz
U,X|S=j)~ N
(A=)~ M N

S ~ Bernoulli(r)

o WLOG set o) = 1 (latent variable scale)

*Andridge and Little 2011, 2020
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PPMM: Theory

@ Assume a proxy pattern-mixture model* for U and X given S:

(4) (4)

. Ha Ouu
U,X|S=j)~ N ,

( | J) ? [u(])] (J) () (1)

OuuOzxx

S ~ Bernoulli(r)

o WLOG set 0'182 = 1 (latent variable scale)

@ Marginal mean of Y is target of inference:

py =Pr(Y =1) = Pr(U > 0) =7 & (u)) +(1 - m) @ (M;m /\/@)

N——

respondents rest of pop

*Andridge and Little 2011, 2020
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PPMM: Theory

@ Assume a proxy pattern-mixture model* for U and X given S:

(4) (4) (J)
. My Ouu Puz
U,X|S=j)~ N
(A=)~ M N

S ~ Bernoulli(r)

o WLOG set o) = 1 (latent variable scale)

@ Marginal mean of Y is target of inference:

py =Pr(Y =1) = Pr(U > 0) =7 & (u)) +(1 - m) @ (Mgm /\/@)

N——

respondents rest of pop

@ Problem: unidentified parameters = {yﬁf”, o), w)}

*Andridge and Little 2011, 2020
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PPMM: Theory

@ Non-identifiable parameters {;ﬁo’, 0 pw)} are just identified by assumption about
selection /response mechanism:

Pr(S = U, X,V) = f(1 = 6)X" 46U, V)

» X* = (1) = rescaled proxy X

Oz

» V = additional variables independent of X and U that may be associated with S

» ¢ € [0,1] is a sensitivity parameter (no info in data about it)
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PPMM: Theory

@ Non-identifiable parameters {;ﬁo’, 0 pw)} are just identified by assumption about
selection /response mechanism:

Pr(S = U, X,V) = f(1 = 6)X" 46U, V)

» X* = (1) = rescaled proxy X

Oz

» V = additional variables independent of X and U that may be associated with S

» ¢ € [0,1] is a sensitivity parameter (no info in data about it)

@ Selected value of ¢ determines selection mechanism:
» p=0-=Pr(S=1UX,V)=f(X*V) Ignorable selection

» 0=1—-Pr(S=1UX,V)=f(U,V) “Extremely” Non-ignorable selection

» 0< o<1 —=Pr(S=1UX, V)= f((1-¢)X* 4+ oU,V) Non-ignorable selection
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PPMM: Theory

For a specified ¢ we can estimate ji,:

z@=%¢(%ﬁ)+u—ﬁwawvvgﬂ)

———
respondents

rest of pop.

where

40 — +<¢+u—¢mw> it —
(bpurlz ( - (b) &(1)

Trr

2
50 14 ¢+ (1 §)phs &%) — 54
uu A(1) ~(1)
QSPUT + ( ¢> Ozx

T = estimated selection fraction

Biserial correlation in selected sample (pA(ulz)) a very important component
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Estimation

“Modified” Maximum Likelihood (MML) estimation:
e 7 = selection fraction
{Mg)’ Agc), ﬂgco), Aé(;)r)} = standard ML estimates (e.g., ,u;(,;) = Tresp)

° pq(w) = biserial correlation estimated via two-step method (oisson et al. 1982)

° ,ug) = @‘1(;1;1)) = & 1(§esp) = from two-step method
@ Suggested sensitivity analysis: ¢ = {0,0.5,1}
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Estimation

“Modified” Maximum Likelihood (MML) estimation:
e 7 = selection fraction
{ 1), 68, Y, Ag;)r)} — standard ML estimates (e.g., it = Tresp)

° p}(w) = biserial correlation estimated via two-step method (oisson et al. 1982)

° ,&1(}) = q)_l(ﬂél)) = <I>_1(gjresp) = from two-step method
Suggested sensitivity analysis: ¢ = {0,0.5,1}

Bayesian approach:
@ Non-informative priors for identified parameters
@ Incorporates uncertainty in the probit regression model for Y'|Z,S = 1 that creates X

@ No info in data about ¢, so take ¢ ~ Uniform(0,1)
(other priors are possible)
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Outline

@ Results from Applying PPMM to COVID-19 Surveys
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Available Data: COVID Surveys

Microdata for survey respondents (S = 1):

e Y = vaccination status (received at least one dose)
» Missing data treatment follows what the surveys did for reporting:

* Census HPS: If missing, assume “no”
* Delphi-Facebook CTIS: If missing, drop (=6-7%)

@ Z = auxiliary variables
» Census HPS: age, gender, race, ethnicity, education
» Delphi-Facebook CTIS: age, gender, race/ethnicity, education
» Missing data treatment:
* Census HPS: No missing data (singly imputed by Census)
* Delphi-Facebook CTIS: If missing any, drop (~15% additional)

@ Sample sizes:
» Census HPS: n ~ 68,000-80,000 per wave
» Delphi-Facebook CTIS: n = 160,000-290,000 per week
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Available Data: Population

@ Source: 2019 American Community Survey
» Weighted estimates from ACS treated as “known”
» Same as using ACS totals for weight adjustments

@ Technically, 2019 ACS gives Z for the full population, not just nonresponding — but
selection fraction is tiny
(N = 250 million, largest n =~ 250 thousand)

Population Truth:
@ CDC benchmark numbers for vaccine uptake (retroactively corrected)

Estimation Details:
@ Ignore sampling weights and treat as non-probability samples
@ Bayesian approach with ¢ ~ Uniform(0, 1)
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Percent Vaccinated: Proxy Strength
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Percent Vaccinated: PPMM Estimates
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Percent Vaccinated: Summary

e PPMM correctly detected direction of selection bias for both surveys in all waves/weeks

e PPMM with ¢ = 0.5 remarkably close to truth for most CTIS weeks

PPMM credible intervals cover the truth for both surveys in all waves/weeks
» Direct survey estimates only covered truth twice (first two waves of Census HPS)

© PPMM credible intervals much wider than survey intervals despite large sample sizes

> Reflects strength (weakness) of proxy model
» Arguably a good feature: no “Big Data Paradox"!
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Percent Vaccine Hesitant

Census HPS:
Once a vaccine to prevent COVID-19 is available to you, would you. . .
© Definitely get a vaccine
© Probably get a vaccine
© Be unsure about getting a vaccine® [hesitant]
@ Probably NOT get a vaccine [hesitant]
© Definitely NOT get a vaccine [hesitant]

Delphi-Facebook CTIS:
If a vaccine to prevent COVID-19 were offered to you today, would you choose to get
vaccinated?

@ VYes, definitely

@ Yes, probably

© No, probably not [hesitant]

@ No, definitely not [hesitant]

*option available starting in mid-April 2021
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Percent Vaccine Hesitant: Proxy Strength

Estimated Correlation (Proxy Strength)

For Respondent Sample
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Percent Vaccine Hesitant: PPMM Estimates

Census HPS Delphi—-Facebook CTIS
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¢ = 0.5 — hesitancy underestimated by ~ 9% for HPS, ~ 7% for CTIS

32/38



Outline

© Summary and Related/Future Work
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Summary and Related Work

o PPMM provides a sensitivity analysis to assess the potential for non-ignorable
nonresponse/selection bias
» ¢ = 0 — ignorable — could be “adjusted away"
» ¢ = 1 — extreme non-ignorable: selection depends only on Y (via U)
» ¢ = 0.5 — could be used as a compromise “estimate” of the bias
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Summary and Related Work

o PPMM provides a sensitivity analysis to assess the potential for non-ignorable
nonresponse/selection bias

» ¢ = 0 — ignorable — could be “adjusted away"
» ¢ = 1 — extreme non-ignorable: selection depends only on Y (via U)
» ¢ = 0.5 — could be used as a compromise “estimate” of the bias

@ Only requires summary statistics for covariates Z for non-selected

» Same information as often used for weighting
» Could be used during data collection to compare potential for bias across a range of Y
» Easiest when population is well-defined and stable

* Example when it's not easy: Pre-election polling!™
» Key point: Need strong predictors of Y that are available at population-level

e PPMNMs also available for estimating means (including deviations from normality) and
linear and probit regression coefficients’

*West and Andridge 2023
TAndridge and Little 2011, Little et al. 2020, Andridge and Thompson 2015, Yang and Little 2021, West et al. 2021
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Future Work / Extensions

Methods development:
@ Using the PPMM to generate non-ignorable selection weights

Extend PPMM for nominal responses
@ Extend PPMM to multivariate outcomes

Adapt PPMM for generalizability of randomized trials in the presence of unmeasured
effect modifiers (current RO3)

Additional applications:
e Apply PPMM to estimate changes in vaccine uptake (less biased?)

@ Apply PPMM to variety of indicators to compare probability-based and opt-in online

samples (AAPOR 2024 presentation)
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Questions?

Thank you!
andridge.1@osu.edu

Full paper online ahead of print:
Andridge, R.R. (2024). Using proxy pattern-mixture models to explain bias in estimates of COVID-19 vaccine
uptake from two large surveys. Journal of the Royal Statistical Society — Series A,
https://doi.org/10.1093/jrsssa/qnae005
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BONUS SLIDE: How the PPMM Identification Works

Assumed model for U and X given S: (U, X|S = j) ~ Bivariate Normal
Assumed response mechanism:

Pr(S=1U,X,V) = f(1 = ¢) X"+ oU,V)
If =0 — response only depends on X (not U)
e Implies [U|X,S =0] = [U|X,S =1]
@ Regression parameters for [U|X, S = 0] are the same as for S =1

e Standard regression estimator (e.g., under MAR assumption)
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e Implies [X|U,S =0] = [X|U, S = 1]
@ Regression parameters for [X|U, S = 0] are the same as for S =1

@ ‘“Inverse regression estimator”

FO<p<1,let W=(1-¢)X*+¢U and [X|W,S = 0] = [X|W, S = 1]
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