
Synergies between Survey Statistics and
Causal Inference: Moving from the Pipette to

the Population

Michael Elliott1,2

1Department of Biostatistics, University of Michigan
2Survey Methodology Program, Institute for Social Research

1 / 55



Overview

Review of finite population inference
Review of causal inference
Commonalities in problems faced and solutions provided
Extending these synergies: from Pipette to Patient to
Patient to Population

Generalizing (“transporting”) causal inference from
randomized trials to a target population
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Finite Population Inference

Making inference about a fixed and well-defined population
of size N.

(Y1,X1),(Y2,X2), . . . ,(YN ,XN)

US population resident April 1, 2020.
Michigan residents who received a COVID-19 diagnosis
between March 1, 2020, and February 28, 2021.
North American auto parts manufactures with a gross
income in excess of $1M between 2010 and 2020

Focus is on inference about a population quantity: a
descriptive statistic such as a population mean
Y = N−1

∑
N
i=1 Yi , or a model parameter such as linear

regression coefficients B =
(

∑
N
i=1 XiXT

i

)−1
∑

N
i=1 XiYi .
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Finite Population Inference

Overview of the population

i I Y X
1 1 Y1 X1
...

...
...

...
n 1 Yn Xn

n+1 0 ? ?
...

...
...

...
N 0 ? ?

Two major approaches to finite population inference:
Randomization or “design-based” inference
Finite population Bayesian inference
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Randomization or “Design-based” Inference

Population data treated as fixed and sampling indicators I
as random.
(Asymptotically) unbiased estimators of the population
quantity of interest.
(Asymptotically) unbiased estimators of variance of these
population quantity estimators with respect to repeated
sampling of I.
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Finite Population Bayesian Inference

Finite population Bayesian inference imputes the
unobserved portions of the population using posterior
predictive distributions (Ericson 1969):

P(Ynobs,Xnobs | yobs,xobs) =∫
P(Ynobs,Xnobs | θ ,yobs,xobs)P(θ | yobs,xobs)dθ ∝∫

P(Ynobs,Xnobs | θ ,yobs,xobs)P(yobs,xobs | θ)P(θ)dθ

The model for (yobs,xobs | θ) should incorporate sensible
design features

In an unequal probability of selection design, the means
and possibly the variances should be a function of sampling
probabilities.

Can use hierarchical modeling to smooth effects of design
and do bias-variance tradeoffs to minimize mean square
error (Elliott and Little 2000).
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Finite Population Inference

Design based inference is “model” and “distribution free”
(although some estimators can be derived from models).
Bayesian inference uses models to reduce variance but
can be susceptible to model misspecification.
Use models that incorporate design features and robust
models (splines, Dirichlet processes, etc.) (Elliott and Little
2000; Elliott 2007; Elliott and Xia 2021).
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Finite Population Inference

“Model assisted’ estimators can bring together elements of
both (usually in a design-based framework) (Särndal et al.
2003).

Suppose X is known in the population, and a model for
Yi | Xi is developed with E(Yi | Xi) = mi . The “doubly
robust” estimator:

yDR = n−1
n

∑
i=1

(yi − m̂i)+N−1
N

∑
i=1

m̂i

is unbiased for Y with respect to repeated sampling even if
the mean is misspecified but becomes more efficient than y
as E(Yi | Xi)→ mi
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Causal Inference: Potential Outcomes
“We may define a cause to be an object, followed by another. . . where, if
the first object had not been, the second had never existed.” (Hume
1748).
Rubin Causal Model (Holland 1986): consider “potential outcomes” for
the same subject Yi under different treatment levels Z = 1, ...T :
Y 1

i , ...,Y
T
i .

Average casual treatment effect comparing treatment level Z = z to
Z = z ′: ACE = N−1

∑
N
i=1(Y

z
i −Y z′

i )

Fundamental Problem of Causal Inference: We only observe the
outcome for the actual treatment given: Y Zi=z

i . All others are
counterfactual. If Z is binary:

i I Z Y 0 Y 1 X
1 1 1 ? Y1

1 X1
1 1 0 Y0

2 ? X2
...

...
...

...
...

...
n 1 1 ? Y1

n Xn
n+1 0 ? ? ? ?

...
...

...
...

...
...

N 0 ? ? ? ?
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Causal Inference: Assignment Mechanism

Focus is typically on assignment mechanism:
P(Z | Y 1,Y 0,X)
Control over treatment assignment: randomized
assignment breaks all associations and confounding, so
that

P(Z | Y 1,Y 0,X) = P(Z ) (typically 1/T to maximize power).

If treatment assignment is uncontrolled but is a function of
covariates unaffected by treatment, then

P(Z | Y 1,Y 0,X) = P(Z | X) = p(X).

(sometimes termed the “propensity score”) (Rosenbaum
and Rubin 1983).
If treatment assignment is a function of the potential
outcomes conditional in X (or equivalently unobserved
confounders), then P(Z | Y 1,Y 0,X) cannot be reduced and
inference will typically depend on unidentified parameters.
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Causal Inference: Randomization vs. Bayesian
Inference

Randomization inference: considers the possible
assignments of Zi across the population given the
assignment mechanism of Zi

If treatment assignment is randomized, the observed mean
difference y1 −y0 = n−1

1 ∑
n
i=1 Ziyi −n−1

0 ∑
n
i=1(1−Zi)yi is

unbiased for sample ACE.
If treatment assignment is not randomized but depends on
X, the propensity weighted mean difference
yw1 −yw0 =

∑
n
i=1 Zi/p(Xi )yi

∑
n
i=1 Zi/p(Xi )

− ∑
n
i=1(1−Zi )/(1−p(Xi ))yi

∑
n
i=1(1−Zi )/(1−p(Xi ))

is unbiased
for sample ACE.
Proof of unbiasedness is similar to that of SRS/weighted
means in probability sampling setting.
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Causal Inference: Randomization vs. Bayesian
Inference

Bayesian inference proceeds similar to the survey setting:
P(Ynobs | yobs,X) =∫

P(Ynobs | θ ,yobs,X)P(θ | yobs,X | θ)dθ ∝∫
P(Ynobs | θ ,yobs,X)P(yobs,X | θ)P(θ)dθ

Obtain draws of Y
1(b)

as n−1
∑

n
i=1 ziyi +(1−zi)Y 1(b)

i where
Y 1(b)

i is a posterior predictive draw of the control outcome
in subjects assigned to the treatment arm, and similarly

Y
0(b

as n−1
∑

n
i=1 ziY 0(b)

i +(1−zi)yi . A draw of the sample

ACE is then given by ∆(b) = Y
1(b)

−Y
0(b)

.
Differences: only outcome is missing; often model will
involve unidentified parameters (e.g, C(Y 1

i ,Y
0
i )).

Modeling still needs to be sensitive to the design.
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Causal Inference: Doubly Robust Estimators

Doubly robust model assisted estimators are available in the casual
inference setting as well.

Since the propensity score is a balancing score – it summarizes all the
information about the association between treatment Z and covariates
X – we need only model the potential outcome as a function of p(X) to
obtain a consistent estimator.

But we can also add an standard mean model to predict the potential
outcome using covariates directly (Bang and Robins 2005):

E(Yi | Zi ,Xi ) = XT
i β +φ1Zipi (X)−1 +φ2(1−Zi )(1−pi (X))−1

If either the mean XT
i β or the propensity score pi (X) is correctly

specified, then a consistent estimator of the ACE is given by

∆= n−1
n

∑
i=1

(Ê(Yi | 1,Xi )− Ê(Yi | 0,Xi ))

An alternative approach replaces φ1Zipi (X)−1 +φ2(1−Zi )(1−pi (X))−1

with a treatment-specific spline on pi (X) and uses a Bayesian multiple
imputation approach for improved efficiency (Zhou et al. 2019).
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Survey and Causal Inference: Overlap

Both involve selection bias: one into a population and the
other into a treatment assignment.
Both involve missing data: one for the unsampled
component of the population and the other for the
unassigned outcome in the sample.
In both cases the randomization approach uses weighting
and generalized estimating equations to compute point
estimates and confidence intervals.
In both cases the Bayesian approach uses multiple
imputation to impute missing data while account for
potential selection bias in the modeling.

Randomization offers robustness at sometimes extreme
efficiency costs; Bayesian approach offers efficiency but
always requires careful model considerations.
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Pipette to Patient to Population

In the clinical trial world we discuss “bench to bedside” (or
“pipette to patient”), bringing the results of biological
research to improve patient health.
But a missing piece is in step from the patient to the
population
Note that I previously referred to the sample ACE, not the
population ACE, when discussing the ACE estimators.
“Transporting” the sample ACE estimators to the
population ACE requires understanding the relationship
between the treatment effect in the sample and the
treatment effect in the population.
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Pipette to Patient to Population

Survey Inference
i I Z Y 0 Y 1 X
1 1 1 ? Y1

1 X1
1 1 0 Y0

2 ? X2
...

...
...

...
...

...
n 1 1 ? Y1

n Xn
n+1 0 ? ? ? ?

...
...

...
...

...
...

N 0 ? ? ? ?
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Pipette to Patient to Population

Causal Inference: Trial
i I Z Y 0 Y 1 X
1 1 1 ? Y1

1 X1
1 1 0 Y0

2 ? X2
...

...
...

...
...

...
n 1 1 ? Y1

n Xn
n+1 0 ? ? ? ?

...
...

...
...

...
...

N 0 ? ? ? ?
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Pipette to Patient to Population

Causal Inference: Population
i I Z Y 0 Y 1 X
1 1 1 ? Y1

1 X1
1 1 0 Y0

2 ? X2
...

...
...

...
...

...
n 1 1 ? Y1

n Xn
n+1 0 ? ? ? ?

...
...

...
...

...
...

N 0 ? ? ? ?
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Effect Modification

A key issue is that the clinical trial sample is rarely a
probability sample from the population, so standard survey
methods cannot typically be applied to clinical trials
samples.
This leads to the issue of transportability: making inference
to a relevant reference population rather than a
generalization of the trial population (Westreich et al.
2017).
Why do we care? In clinical trials (putting non-compliance
aside) we are in the happy situation were treatment
assignment is randomized, so p(X)≡ p is constant, and
confounding is not an issue.
Randomization of treatment eliminates the effect of
unobserved confounders, but it does not eliminate the
effect of unobserved effect modifiers.
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Effect Modification

Suppose our true model relating an outcome to a
treatment involves an unobserved variable U that is both a
confounder and effect modifier (Elliott 2016):

E(Y |U,Z ) = β0 +β1Z +β2U +β3ZU

ACE = Eu(E(Y 1 −Y 0 | U = u)) = β1 +β3µU .
E(y1 −y0) without randomization (but assuming a linear
association between U and Z ) is β1 +(α0 +2α1)β3 where
α0 = E(U)−σUZ/σ2

Z E(Z ) and α1 = σUZ/σ2
Z E(Z ).

Randomization guarantees U ⊥ Z and thus
E(y1 −y0) = β1 +β3E(U).
However to guarantee E(U) = µU requires either a
probability sample or some type of adjustment to make the
clinical trial result representative (realistically, more
representative) of the population.
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Generalizability Review

Seminal works include Cole and Stuart (2010) and Stuart
et al. (2011).

Cole and Stuart combined data from a RCT of HIV testing
the effect of a protease inhibitor with data from US-wide
surveillance of new HIV cases to develop inverse
probability of selection weights.

Weighted Cox PH models found a marginally significant RR
of 0.57 (95% CI 0.33-1.00) versus the highly significant RR
of 0.51 (95% CI 0.33-0.77) in the RCT.

Stuart et al. developed a propensity matching method to
complement the IPWT method, based on the propensity to
be in population sample.

Hartman et al. (2016) adapted the IPWT method by first
pairing cases with controls within the RCT, and then
weighting these pairs to better match the distribution of the
population of interest.

Estimates treatment effect among the treated by weighting
the pairs to the treated population.
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Generalizability Review

Kern et al. (2016) model outcomes as a function of
covariates and treatment status, allowing for interactions
between the two. These models predict outcomes under
treatment and control within data from the population or a
representative sample thereof.
“Doubly-robust” methods that combine propensity score
weights and outcome models have been the focus of
recent developments.

Dahabreh et al. (2020) consider three versions of these
estimators that combine predictions of the outcome under
treatment or control in the representative sample with
IPTW-weighted residuals of the outcome model in the RCT.
Schmid et al. (2022) consider a targeted maximum
likelihood estimator (TMLE) that uses a “clever covariate”
(the IPTW weight itself) together with the outcome model to
predict the outcome under treatment and control in the
representative sample.

Degtiar and Rose (2023) provide a overview of the
currents methods used for RCT generalizability. 25 / 55



Non-probability Inference Review

Traditionally population inference has focused on
probability inference (Neyman 1934).

Cost, response rates, and new types of available data have
led to a rethinking of rethinking of the role of non-probability
samples (Baker et al. 2013).

Valliant and Dever 2011 develop IPWTs to estimate a
“true” probability of selection for the non-probability sample
elements in a manner similar to Cole and Stuart. Elliott et
al. (2010) developes IPWTs in a somewhat different
manner.
Similar to Stuart et al. 2011, Rivers (2006) matched
subjects in the non-probability sample to subjects in the
probability sample via a propensity score to be in the
probability sample, with the matched nonprobability
sample used for inference.
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Non-probability Inference Review

Direct outcome regression models that predict outcomes
based on covariates are less common in the
non-probability literature, perhaps because of survey
statisticians’ traditional aversion to fully model-based
approaches.
But “doubly robust” estimators have been developed: Chen
et al. (2020) use estimators that combine model-based
estimates from the probability sample with
propensity-weighted residuals from non-probability sample.
A review of estimation from non-probability samples is
available at Wu (2022).
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Distinctions between the Generalizability and
Probability/Non-probability Sampling Literature

There are many similarities between the RCT generalizability
literature and the combining of probability and non-probability
samples literature, but there are also key distinctions.

With the exception of Ackerman (2021), the generalizability
literature has generally ignored complex sample design
features such as weighting, clustering, or stratification in
the benchmark probability sample, although these features
are commonly present in both general population surveys.
While the probability survey literature has a large section
devoted to missing data, it usually does not face a setting
where all observations have missing elements in a joint
distribution of interest.
The relevant patient population may be more difficult to
define, let alone obtain a high-quality sample from.
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Our Proposed Work: Notation and Assumptions

Notation:
Defined population of size N.
Binary treatment Zi ∈ {0,1}, with potential outcomes Y (0)i
and Y (1)i .
Sampling indicators SR

i (R=randomized trial) and SB
i

(B=probability/benchmark dataset)..
Probabilty of being sampled in B is known: P(SB

i = 1) = πB
i .

Common covariates Xi in B and R.
Assumptions:

Randomization: (Y (1)i ,Y (0)i)⊥ Zi | SR
i = 1;

Stable Unit Value Treatment Assignment (SUTVA): the
observed outcome Yi = ziY (1)i +(1−zi)Y (0)i for treatment
assignment Zi = zi ;
Positivity: P(SR

i = 1)> 0 and P(SB
i = 1)> 0 for all i ;

Estimability: P(SR
i = 1) = πR

i = g(Xi ;θ) for known g and
unknown θ ;
Ignorability: (Y (1)i ,Y (0)i)⊥ SR

i ,S
B
i | Xi .
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Pseudo-weights

Standard inverse probability weighting (Valliant and Dever (2011)):

π
RB
i = P

(
SR

i = 1|Xi = xi ,S
B
i = 1 or SR

i = 1
)
.

where πRB
i is estimated by (weighted) logistic regression,

Elliott et al. (2011) show via Bayes’ rule that

π
R
i = P(SR

i = 1|Xi = xi ) ∝

P(SB
i =1|Xi = xi )

P
(

SR
i = 1|Xi = xi ,SB

i = 1 or SR
i = 1

)
1−P

(
SR

i = 1|Xi = xi ,SB
i = 1 or SR

i = 1
) = π

B
i ×

πRB
i

1−πRB
i

The components of πR
i can be estimated using generalized linear

regression or Bayesian Additive Regression Trees (Chipman et al.
2010).

Chen et al. (2020) argue that π̂RB
i is not a consistent estimator of πR

i
unless πR

i is a constant. Chen et al. suggest an maximum likelihood
estimator of πR

i that does provide a consistent estimator; however, it
does not easily admit non-linear estimators such as BART.
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Prediction

Under randomization, we have

E(Y (1)i | Xi) = E(Yi | Xi ,Zi = 1) | SR
i = 1

E(Y (0)i | Xi) = E(Yi | Xi ,Zi = 0) | SR
i = 1.

Thus a correct model of E(Yi | Xi ,Zi) allows prediction of
Yi(1−Zi), and the following estimators of the PATE are

∆̂WVD =
∑

N
i=1 I(SR

i = 1)/π̂RB
i [Zi(yi − Ŷ (0)i)+(1−Zi)(Ŷ (1)i −yi)]

∑
N
i=1 I(SR

i = 1)/π̂RB
i

∆̂WE =
∑

N
i=1 I(SR

i = 1)/π̂R
i [Zi(yi − Ŷ (0)i)+(1−Zi)(Ŷ (1)i −yi)]

∑
N
i=1 I(SR

i = 1)/π̂R
i
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Prediction

If outcome information is available in the probability sample, an
alternative that only uses prediction is

∆PRED = ˆ̄Y (1)− ˆ̄Y (0),

ˆ̄Y (Z )=
∑

N
i=1[I(S

R
i = 1)+(wB

i −nR/nB)I(SB
i = 1)][I(Z = zi )yi + I(Z = 1−zi )Ŷi (Z )]

nR +∑
N
i=1 I(SB

i = 1)(wB
i −nR/nB)
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Inference

Since all of the methods we are consider involve estimating
Y (1−zi) using BART, we will use a Bayesian approach for
inference.
Each draw of Y (1−zi) generates a draw of the relevant
PATE estimator.

Point estimates are obtained as the posterior mean of these
draws, with 1-α credible intervals obtained from the α/2
and 1−α/2 empirical CDFs.
For ∆WE we also consider an estimator of the variance
(∆WE2) that incorporates uncertainty in the estimation of
πR

i .

33 / 55



Inference

Because the prediction model uses a complex sample
design for the probability sample, we use Rubin’s Rules for
combining multiple imputations:

Ê(∆PRED | data) =
1
B

B

∑
b=1

∆
(b)
PRED

v(∆PRED | data) =
1
B

B

∑
b=1

v(∆(b)
PRED)+

B+1
B

1
B−1

B

∑
b=1

(
∆

(b)
PRED − Ê(∆PRED | data)

)2

where v(∆(b)
PATE) is estimated using a design-based

estimator of variance that treats the imputed values of
Y (1−zi) as observed.

34 / 55



Treatment effect among the treated

Simulations and example focus on population treatment effect
among the treated (PATT):

∆̂WVD,PATT =
∑

N
i=1 I(SR

i = 1)/π̂RB
i Zi(yi − Ŷ (0)i)

∑
N
i=1 I(SR

i = 1)Zi/π̂RB
i

∆̂WE ,PATT =
∑

N
i=1 I(SR

i = 1)/π̂R
i Zi(yi − Ŷ (0)i)

∑
N
i=1 I(SR

i = 1)Zi/π̂R
i

∆̂PRED,PATT =
∑

N
i=1[I(S

R
i = 1)+(wB

i −nR/nB)I(SB
i = 1)]Zi [yi − Ŷi(0)]

nR1 +∑
N
i=1 I(SB

i = 1)Zi(wB
i −nR/nB)

where nR1 is the number of observations assigned to treatment
in the RCT.

Inference using BART for prediction proceeds as the in
estimation of the PATE.
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Simulation Study
A linear model is used to generate each potential outcome
Y (Z ) for a binary treatment Z . The linear predictor for
Y (1) has two normally distributed covariates, X1 and X2:
N = 20,000, n = 1000.

Y (Z )∼ N (µZ ,1)

µ1 = β0 +δ +β1X1 +β2X2 +β3X2
1 ,µ0 = β0

Poisson sampling is used to allocate observation i into the
RCT (R; non-probability) data or benchmark (B;
probability) sample:

Pr(SB
i = 1) = expit(ψB

0 )

Pr(SR
i = 1) =

{
0, SB

i = 1
expit(ψR

0 +ψR
1 X1,i +ψR

2 X2,i +ψR
3 X1,iX2,i ), SB

i = 0

Consider a 2×2×3 design:
Outcome with and without quadratic term
RCT SRS, with and without interaction
Alignment + (Effect of X in same direction for outcome and
selection) and - (different directions) (Kern et al. 2016).
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Simulation Study: Bias
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Simulation Study: RMSE
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Simulation Study: Coverage
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Simulation Study: Summary

SATT good if RCT is simple random sample; poor
otherwise.
WVD (estimated with logistic regression and no interaction)
not too bad for bias until prediction model is complex;
coverage is poor is prediction model is misspecified.
WE1 (treating pseudo-weight as fixed) generally works
reasonable well with respect to bias but has modest
undercoverage with more variable selection probabilities;
WE2 (incorporating variance of pseudo-weight) somewhat
overcorrects for more conservative coverage except when
prediction is complex, in which case bias effects coverage.
PRED has best bias properties and, because it utilizes
predictions from benchmark data, much smaller RMSE.
Generally good coverage though some undercoverage
occurs when prediction model is simple and positively
aligned.
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Study of pulmonary artery catheterization (PAC) in
critical care

PAC is an invasive and controversial cardiac monitoring device
that is used in critical care. “PAC-Man” randomized trial (Harvey
et al. 2005):

1,013 subjects at 65 United Kingdom intensive care units.
Outcome=in-hospital mortality.

Concerns about differences between the study sites and the
general population in which PAC is used (Sakr et al. 2005).
Obtain data from the Intensive Care National Audit Research
Centre (ICNAR) database (Harrison et al. 2004)

1.5 million admissions to 250 critical care units in the UK.
Restricting to same inclusion and exclusion criteria as PAC-Man
yields 1052 PAC population cases
Population control group not exchangeable with RCT controls,
even conditional on available covariates.

Restricted their analysis to the treated only: PATT
Approximate as being a SRS from a superpopulation by assigning
a small sampling fraction value: 0.01 so πB

i ≡ 0.01 and thus
wB

i ≡ 100.
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Covariates

Variable RCT INCAR p-value
Age 64.5 61.9 <0.001
% Female 41.8 39.0 0.22
% Elective 6.3 9.3
% Emergency 27.4 23.1 0.007
% Medical 66.2 67.6
% Ventilator 90.3 86.2 0.006
% Teaching Hosp. 21.5 41.2 <0.001
Survival Prob. 54.1 52.5 0.15
AP2 score 17.8 17.5 0.32
% Cardio event 3.8 3.2 0.60
% Renal failure 1.2 1.2 1.00
% Resp problems 3.6 2.5 0.19
% Liver failure 2.5 2.2 0.78
% Immunte disorder 7.8 6.8 0.46
Glasgow coma score 3.95 3.77 0.042
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Results

Adjusted SATT obtained from a BART model trained on the
observed data in the RCT assigned to treatment assigned
to control:-4.3% (95% CI -9.5%,1.0%)
The PATT estimated under the pseudo-weighting method
of WE1 is 0.2% with a 95% CI of (-4.2%,4.4%).
The PATT estimated under WE2 is 0.2% with a 95% CI of
(-9.5%,10.1%).
The PATT estimated under PRED was 6.8% with a 95% CI
of (-1.2%,14.8%).

While none of the effects significant, the PATT expected
direction of the effect, in contrast to the SATT.
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Model Checking: Testing for ignorability

Transportability relies on the ignorabilty assumption:
potential outcomes are independent of sampling indicator
given covariates.

Impute Y (Z )i when Zi = 1−z in the probability sample (or
Y (Z )i for Z = 0,1 if Y is not observed in the probability
sample).

Assumption testable when Y is observed in the probability
sample

Test the reduced version Y (1)i ⊥ SR
i ,S

B
i | Xi in PAC-Man

since only treatment outcomes are available.
Posterior predictive distribution p-value:
T rep = ∑

N
i=1 I(Si = 1)Y (1)rep

i versus
T obs = ∑

N
i=1 I(Si = 1)I(Zi = 1)yi .

P(T rep < T obs | data ) = 0.159,
Overestimate the success of PAC in the population, or,
equivalently, subjects in the RCT were more likely to have a
good outcome even after controlling for available covariates.
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Ignorability-corrected PATT

The impact on the failure of ignorability in this setting
depends on how the joint distribution of
(Y (1)i ,Y (0)i) | Xi ,Si = 2 differs from
(Y (1)i ,Y (0)i) | Xi ,Si = 1.
If δ (1,Xi)

S −δ (0,Xi)
S = 0 for all Xi ,

δ (z,Xi)
S = P(Y (z)i | Xi ,Si = 2)−P(Y (z)i | Xi ,Si = 1) then

the PATT estimate remains unbiased
Other extreme:ignorability holds on the control arm, so that
δ (0,Xi)

S = 0 or, more generally E(δ (0,Xi)
S) = 0.

E(δ (1,Xi)
S) = E(T rep −T obs | data ) = 8.4%

Estimate corrected PATT of 6.8%+8.4%=15.1%.
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Discussion

Econometricians, epidemiologists, and biostatisticians
have independently invented and reinvented the wheel of
causal inference for the past several decades, in the
process following or borrowing the tools of population
inference from survey statistics.
Survey statistics can return the favor by adapting recently
developed methods for non-probability samples for the
important task of transporting randomized trials to better
understand how novel treatments can work in a larger
population.
“Tip of the iceberg” of research opportunities:

Accommodating non-compliance.
Mediation; confounding by indication in longitudinal studies.
Adaptive trial design to ferret out key interactions.
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Contact info

THANK YOU!
I want to thank Richard Grieve, Orlagh Carroll, and James
Carpenter at the London School of Hygiene and Tropical
Medicine for their assistance and introduction to the Pac-Man
trial data.

Please feel free to contact me at mrelliot@umich.edu if you
would like to discuss any of the material in this presentation
further.
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