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Discuss how flexible formal privacy methods can help address privacy concerns
while limiting new operational barriers to social science data collection.

In this talk, I'll discuss...

What formal privacy (FP) methods, such as differential privacy (DP) offers
for public data curation.

Why applying DP to survey data is especially challenging.

What strategic relaxations of DP offer FP guarantees without interfering
with survey operations.

How to design FP mechanisms which accommodate reproducible inferences
from social science data.
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Large-scale data and computing makes reconstructing personal information from
published datasets easier than ever before.

Traditional work: statistical disclosure limitation (SDL) techniques evaluate

properties of datasets to determine individuals’ risk of reidentification
[HDF+2012]

Modern problem: any statistic can be used to help reidentify individuals!
[DN2003,K2009]
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2010 Census data is highly susceptible to reconstruction [A2021]:

Tabular summaries from the U.S. Census can be used to reconstruct
potential populations which conform to these summaries

Confirmed reidentifications for ~ 52 million respondents, ~ 16% population

Record Linkage Summary from Commercial and CEF Record Sources

PIK, Block, Age, Records with PIK, | Putative Re-
Sex Record Available Block, Sex, and | identifications | Confirmed Re-
Linkage Source Records Age using Source identifications
Commercial 413,137,184 286,671,152 137,709,807 52,038,366

Figure: Reconstruction attack results from third-party data (source: U.S. Census)
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Reconstruction attacks have tangible harms:
Ex1: Reidentifying trans youth [KF22]
Ex2: FERPA violations [C22]

As a result, data curators now turn to
privacy-enhancing technologies (PETs):

U.S. Census Bureau's disclosure avoidance
modernization efforts satisfy Title 13 and
26 requirements.

Biden's executive order (last Monday)
proposes broad adoption of PETs for
statistical agencies.
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Notation:
0 € ©: parameter
fo(+): model
X € X: database
Y € V: mechanism output
M randomized algorithm
ma(+): adversary prior

wp(-): data analyst prior

Privacy Goal

Enable inferences about global parameters 6 without leaking information about
confidential data X.
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Formal privacy makes quantifying disclosure risks inherent to the mechanism M.

Desiderata:

Methodological transparency: knowledge of a release strategy should not
disclose additional confidential information.

Robustness to post-processing: additional data processing operations
shouldn't degrade privacy guarantees.

Privacy accounting: privacy preservation should be quantified and
accounted for in different statistical tasks.

7/34

Jeremy Seeman FP for public data curation



DP [DMNS2006] is a popular framework for releasing statistical results with
relative robustness to individuals’ data contributions:

X £ sample space of 1 individual's data
(Y, F) = output space
M=E{ux | X € X"} release mechanism

Differential privacy [DMNS2006]

A mechanism M satisfies (€,d)-DP if, for all B € F and adjacent X, X’ € X"
(i.e., X, X’ differing on one record):

ux(B) < e“px/(B) +9

When 0 = 0, we say M satisfies e-DP. Notes:

DP mechanisms require randomized noise with magnitude inversely
proportional to e.

Privacy utility trade-off: smaller €, greater privacy, less data utility.
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DP changes the unit of analysis for disclosure avoidance.
SDL: absolute disclosure risks as a property of published statistics.

DP: relative disclosure risks as a property of a schema (X) and mechanism.

Testing interpretations: suppose, WLOG, we want to identify the first record Xji:

H()ZXl:Vo, H11X1:V1

Any level-a (€,9)-DP has Type Il error at least [WZ2010]:
fes() £ max {O, 1—0—ae‘ e (1—0— oz)} :

When 6 = 0, Bayes factors are bounded within [e™¢, e€]. [KM2012]
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Private selection:

Goal: minimize loss function Lx while satisfying e-DP
Lx : X" x )Y — [0, 00]
Key ingredient: bounded sensitivity of Lx. For all adjacent X, X’ € X"

ILx(y) — Lx/(y)|] < AL < oo.

Exponential mechanism [MT2007]

A sample from density fx with the form:

fx(y) o exp (—GLQXA(Ly)) ,

with respect to a common base measure v(y) over (), F) satisfies e-DP.
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Open issues

DP requires additional randomness for every statistic derived from the
confidential data, but this doesn’t happen in practice!

DP only protects against information leakage attributable to the
mechanism form [KS2008,KS2014]

Most DP analyses intentionally ignore the joint effects of public information
released about the same confidential dataset.

DP treats all public information as equally disclosive, which may not be
practically relevant.
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e
“Adjacent databases” definitions tend to be over-inclusive for surveys.

e Requires protecting auxiliary data that researchers may not be able to access.
@ Obstructs “secrecy of the sample” based on pathological worst-case

scenarios.
Pure DP analyses prevent deterministic survey design decision-making.

e Making survey methodology public can violate DP [SB21,BDG-+22]

e Data-dependent sampling designs need to be randomized to ensure DP,
which can be economically and/or logistically infeasible [BDG+22,D23].

e Ex: "With non-zero probability, DP data-dependent sampling rates can take

any value between 0 and 1."
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Decisions surrounding how to use all PETs, not just DP, are contentious:

Social science researchers tend to strongly endorse or strongly oppose DP
because it intentionally degrades data quality in service of a social value...

...making holistic policy decisions about how to implement any PETs, not
just DP, particularly challenging [S23]*.

Goal: strategic relaxations of DP for survey methodology

Provide FP methodology that simultaneously...
Enables formal privacy guarantees which protect sensitive information...

...while minimizing interference with survey operations.

'Seeman, 2023. “Better Privacy Theorists for Better Data Stewards.” (forthcoming) JPC. 13/34
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We define public information as any information
dependent on X without privacy-preserving
noise (call this r.v. Z).

The relationship between X and Z may be
deterministic or probabilistic.
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Public information emerges from external societal forces:

At implementation time: laws, social norms, and other established
contextual information flows, decision-making process details.

Before implementation: past releases and time dependence, establishment
of public domains / common knowledge.

Examples:
Summary statistics (ex: tabular summaries [GM2020])
Database structure (ex: manifolds [RBS2021])
Autocorrelation structure (ex: spatiotemporal models [Q2020])
Known phenomenological structure (ex: genomic data [AAU2020])
Sampling methodology (ex: surveys [SB2021])
Fitness-for-use statistics (ex: linear query errors [XDW+-2021])

15/34

Jeremy Seeman FP for public data curation



General approach:
Release essential statistics as-is when contextually necessary.
Adjust sensitive, granular statistics with formal privacy protections given
essential statistics.

Technical change:

Standard DP: marginal distributions of data releases given adjacent
databases should be close.

Our proposal: conditional distributions given “adjacent databases” and
public information should be close.

e NB: adjacent databases now means conditional information about individual
records, S1,S2 € Spairs,DP, Making the new testing problem

Ho . 51, H1 Y

o Example: s; = "the first record in X has value vi € X" (s similar with v2).
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We propose DP-style privacy guarantees as properties on conditional
distributions X | Z, extending [KM2014]:

Def: e TP [SSR2022] *

For each z € Z, let Dpp, be a collection of conditional distributions for
X | Z =z indexed by 0, € ©7. We say Y satisfies e-TP if for all z € Z and
B € Fy, for all distributions 8, € Dpp,, and for all (s1,s2) € Spairs, DP2, Where:

Spairs.pPz = {(51,%2) € Spairs.0p | P(si | ;) ¢ {0,1} Vi€ {1,2},0, € Dpp,},

we have:
P(Y cB ‘ 51,92) < GGP(Y c B | 52,(92)
P(Y cB | 52,92) < GGP(Y € B ‘ 51,92).
1Seeman et al, 2022. “Formal Privacy for Partially Private Data.” Under Revision at JMLR. 17/34
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Suppose we observe Xi,..., X, € [-A/2,A/2], and we consider data
generating processes of the form for estimating X:

Xty X N(p,0%),  pel[-0/2,8/2], o€ (0,00)

Suppose we assume Z is jointly MVN with X by introducing new covariance
parameters:

X v 0_2 ZT
Xl ~ N 7 . (Z n ZXVZ)
7 L7 XVZ 794

> xvz and Z\/Z_determines the strength of relationships between Z (public
information), X (statistic of interest) and X; (one record).

If 2 xv7 isn't full rank, then Z is a linear combination of Xi,..., X, —
the support of Xi,..., X, has smaller dimension!
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Suppose we have j € J strata and perform SRS without replacement within
each strata. Existing approaches either...

violate DP (like Neyman allocation) [BDG+22]...

. or use public strata sizes and ignore joint privacy concerns [LBG+23].

Example application of e-TP:
Public information: population and sample strata sizes, z = {(N;, nj)}f:1

Data generating distributions: 6, € ©, indexes all SRS without
replacement distributions given population and sample strata sizes z.

Protected attributes: within-strata responses but not strata inclusion
(example interpretation below).

P(Output | Unit i in strata j has response y;) < exp (¢)
xp (€

jelJieln P(Output | Unit i in strata j has response y,) —
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e- TP interpolates between the units of

analysis for statistical disclosure
limitation (SDL) and DP.

The bad news:

e Guarantees non-uniform across
schema — certain database
reconstructions will be possible

e Limits generalizability of
composition results

The good news:

e For the partial schema, e-TP
maintains similar desirable
properties to e-DP

@ SDL and e-TP could be satisfied
simultaneously
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Two key differences when using e-TP versus e-DP:

Sensitivity inflation: - TP requires more noise than ¢-DP as...

e Released statistics depend more on Z than Y
e Space of possible data generating scenarios © grows.

Prior regularization: use Z = z in the limit as ¢ — 0.

e Standard DP: as ¢ — 0, release uniform noise
@ c-TP:ase — 0, release 0 | Z = z.
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e
We can find approximate solutions to optimization problems with loss functions
Lx while satisfying e-TP:

Thrm: Wasserstein Exponential Mechanism [SSR2022]}

Y ~ fx WassExpMech Satisfies e-TP, where, w.r.t. vz:

eLx(y)
f asshx ec T A A\
X, WassExpMech (¥) O<e><p( 20(AZ))

where
A, - sup sup W (IP( | 92751)7P(' | 92752))7
0,0, (51752)€Spairs,DPz
o(A;) = sup {|Li(y) — Le(¥)] | x,x" € X", d(x,x") < A,}.
Extensions:

Optimality: CLT asymptotics with additional Lipschitz regularity.

Sampling: TP requires exact samples, implemented in [SRS21]?

1Seeman et al, 2022. “Formal Privacy for Partially Private Data.” Under Revision at JMLR.
2Seeman et al, 2021. “Exact Privacy Guarantees for Sampling Algorithms Implementing the Exponential
Mechanism” NeurlPS. 22/34
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For the MVN example, we have, based on 6, = (u, 1>, 0%, Lxvz, Lvz)

A
A, = sup |X] z—l( >]
ezegz[ XVZ&vz z— gz

Notes:
A, depends on observed value of z € Z.

Maximum achieved by “large” (in spectral norm terms) values of ¥ xyz and
Y vz (i.e., with the most dependence).
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Without Z, characterizing private inference requires the marginal of Y:

Mamo(y) £ > Pumly | X)Po(X)
Xexr
Under DP, the missing data problem [RL19] has some unique properties:
Complete missingness: X is not observed.
Perfect specification: Y | X is designed, not modeled.

All disclosure avoidance methods require adjusting statistical inferences, not just
those that inject additional noise. [SS2022]*

Slavkovi¢ and Seeman, 2023 “Statistical Data Privacy: A Song of Privacy and Utility.” ARSIA. 24/34



Two problem classes in private inference:

Design an optimal privacy mechanism and estimator pair for a particular
inference task under loss function L:

éDeSign = argminsupEy, . [L (5( Y), 0)]
6,  Po M

Adjust an existing privacy mechanism M for a particular inference task:

QAAdjuSt = argminsupEp, [L <9~( Y), 9)}
0 Po ’

Both problem classes require adjusting uncertainty for privacy preservation, but
optimal approaches for one may not be optimal for the other! [S52022]}

Slavkovi¢ and Seeman, 2023 “Statistical Data Privacy: A Song of Privacy and Utility.” ARSIA. 25/34
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...however, we may not always have direct access to Y and Z!

Private outputs may be post-processed to conform with public information,
often by solving an optimization problem to minimize ||Y — Z]|.

Ex: U.S. Census Bureau's Top-Down Algorithm [A+2021]

Post-processing affects design and adjustment differently in the
presence of public information!
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Performing inference directly on Y, Z is preferable to using Y'*:

Finite-sample inference given Y, Z is more powerful than inference given
Y* in expectation, and uniformly for exponential family models!.

Post-processing can remove auxiliary information that limits inference
given Y™, even for asymptotically optimal results.

The joint distribution of Y, Z is computationally easier to work with than
the marginal distribution of Y*, and we can derive approximate

Bayesian computation (ABC) algorithms for exact sampling from the
posterior of 6 | Y, Z [G2019,SSR2022]°

(All theorem statements / proofs in appendix)

1Seeman et al, 2022. “Formal Privacy for Partially Private Data.” Under Revision at JMLR.

2Seeman et al, 2020. “Private Posterior Inference Consistent with Public Information: A Case Study in
Small Area Estimation from Synthetic Census Data.” PSD. 27/34
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Suppose the Pennsylvania Dept. of Health had the following release plan:

Public statistics Z: last month's per-county COVID-19 cases and total
current COVID-19 cases

Private statistics Y: current month's per-county COVID-19 cases

We analyze two different release strategies [SSR2022]!:

PostProcessing: calculate Y* as the statistics closest to Y that agree
with Z (all Y* entries non-zero, sum to statewide total)

WassMechCongenialPrior: incorporate Z through the base measure vz

1Seeman et al, 2022. “Formal Privacy for Partially Private Data.” Under Revision at JMLR. 28/34
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1Seeman et al, 2022. “Formal Privacy for Partially Private Data.” Under Revision at JMLR. 29/34
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[SHV2020] demonstrated that mortality rates (using both CDC and Census
data) by county have urban vs. rural and racial disparities when comparing

non-private and private data released by an earlier version of the U.S. Census
DP Algorithm.

Figure: Percentage errors in mortality rates comparing original Census private and
non-private results for k = 14 counties in Alaska
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Analysis outline:

e Synthesize multiple PPD replicates according to three different methods and
compare inferential accuracy

@ Private information X: small-area mortality data
@ Public information Z: nationally aggregated mortality data

Methods to compare:

Naive: (unadjusted) directly substitute noisy DP counts Y into test statistic
calculation 4(Y).

PostProcessed: post-process Y, Z into Y™ and calculate QA(Y*)
ConstrainedPosterior: (adjusted) estimate test statistic using empirical
distribution of posterior samples drawn from 6 | Y, Z.

1Seeman et al, 2020. “Private Posterior Inference Consistent with Public Information: A Case Study in
Small Area Estimation from Synthetic Census Data.” PSD. 31/34
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For small counties in rural Alaska, sampling from 0 | Y, Z offers better average
data utility by limiting additional errors introduced by post-processing.

County Method MSE Variance Bias
Haines Naive 0.33 0.20 0.13
Haines PostProcessed 0.32 0.19 0.13
Haines ConstrainedPosterior 0.04 0.03 0.02
Nome Naive 0.31 0.19 0.11
Nome PostProcessed 0.31 0.20 0.11
Nome ConstrainedPosterior 0.03 0.02 0.01
Prince of Wales Naive 0.17 0.13 0.04
Prince of Wales PostProcessed 0.17 0.13 0.04

Prince of Wales ConstrainedPosterior 0.06 0.05 0.01

Table 2. Comparison of DP estimates of P(H; | {Y:}7—1) from 100 synthetic DP data
sets for small counties in Alaska

1Seeman et al, 2020. “Private Posterior Inference Consistent with Public Information: A Case Study in
Small Area Estimation from Synthetic Census Data.” PSD. 32/34
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Relaxations of DP help account for data
collection and privacy-utility trade-off
decision-making, especially for social
science data like surveys.

As more auxiliary data sets use FP,
research data products like Census noisy
measurements files (NMF) will provide
better inferences that require modeling
noise in auxiliary data.

Implementing FP requires holistic risk
evaluations that account for
curator-induced public information for
greater accountability and transparency

[5523].1

1Seeman and Susser, 2023. “Between Privacy and Utility: On Differential Privacy in Theory and
Practice.” ACM JRC. 33/34
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Discussion: Posterior-to-Posterior Semantics and PPD

Discussion: e-TP Robustness to Misspecification in © 7

Discussion: MCMC Approximation Privacy Risks and Atomic Regeneration
Proof: WEM

Proof: WKNG

Proof: Exact Sampler Runtime

Proof: Exponential Family Stochastic Dominance

Algorithms: Perfect sampling

Algorithms: ABC Inference

Case study: Rural Alaksa mortality

Case study: Pennsylvania Spatiotemporal COVID-19 data

Case study: worst-case MCMC convergence vs. realized exact runtime
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Discussion: Posterior-to-Posterior Semantics and PPD

2/81

Jeremy Seeman FP for public data curation



“...but | thought DP was supposed to provide protections against adversaries
with arbitrary background knowledge [BGKS2012,KS2014]!? Isn't this a solved

problem!?”

Short answer: not technically.

DP ensures that any arbitrary posteriors, updated from two adjacent
databases based only on the mechanism output Y, are close in statistical
distance.

DP does NOT ensure that this same relationship holds when the
mechanism form changes with public information.
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Let x; , € X" be the database x where the ith record is replaced with arbitrary,
data-independent value v. Define:

s B(M(x) = y)e()
T ) = S BMGE,) = y)r(x)

Then [KS2014] show that, for any x, i, v, y, we have

drv (7(- [ y), miv(- | y)) < e —1.

Problem: what happens when M depends on Z7?
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Let Xi,...,X, € {0,1} and let T(X) =>_"_, X;. Then releasing Y s.t.
_ ¢
Peroo(Y =) = C7He TX)) exp (=51 T(X) = 1) Lyeqon,..m
satisfies e-DP, where

C(e, T(X)) = Zp (=517 = 1)

Note that C(-,") is
Monotonically decreasing as € increases.

Monotonically decreasing as | T(X) — n/2| increases.
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Suppose we want to ensure, for some a € {0,1,...,n} st. T(X)> « and
n— T(X)>aand g €(0,1),

P.roo(]Y = T(X)| <) >1- 8.

Equivalently,

C e, T(X)) [ 1 —|—2;exp (—%E) >1-0

Let ¢(€, T(X), a, B) = 1 if this condition is satisfied and ¢(€, T(X),a,3) =0
otherwise. Then ¢(-,-,-,) is

Monotonically increasing as €, | T(X) — n/2| increases.

Monotonically increasing in «, 5 increases.
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Lemma

For any k € {min{T(X),n— T(X)},...,n/2}, there exists a*, * such that
ole, T(X),a™,0") =1 = |T(X)—n/2| > k.

Suppose the PLB €* is chosen such that ¢(e*, T(X),a*,3*) = 1. Then both
the following are true:

The marginal distribution of Y satisfies the €*-DP probability inequality
under the exponential mechanism implemented with PLB €*.

The conditional distribution of Y | ¢(€*, T(X), a*, 5*) = 1 fails to satisfy
the e-DP probability inequality for any finite € value.
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Attempted solution 1: what if you set the PLB based on alternative, public
data sources?

o Ex: setting PLBs based on historical and/or synthetic data (typical
approach used by Bureau, FSAs, etc.). )
e Problem: suppose the PLB €* is chosen so that ¢(¢*, T(X),a,8) =1,

where T(X) is publicly available. Then if T(X) and T(X) are close with
high probability, the previous lemma still holds.

Attempted solution 2: what if you chose the PLB based on the worst-case
database?

@ Problem: to achieve the same data utility under an empirically chosen PLB
€, a new worst-case privacy loss budget ¢* takes the form

e =inf{e >e| Prp(|Y — T(X)| > a) <Pu (Y —n/2] < a)}

@ AThis scales linearly with the number of queries answered, when we only
considered answering one sum query.
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Randomized algorithms and conditional distributions are different mathematical
objects without the same properties.

DP mechanisms are collections of marginal distributions on Y indexed by
realizations of the confidential data X, which is treated as a constant.

Conditional distributions are only unique up to sets of measure zero.

Explanation

Randomized algorithms only characterize the presented mechanism form, not
how the mechanism form was chosen and its affects on privacy guarantees.

—> We should analyze Y | Z to capture how Z changes the mechanism form.
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Discussion: e-TP Robustness to Misspecification in © 7
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How do we choose ©2, the space of

admissible dependency models? 0,) o)
Too little dependence: Apsis
underestimating privacy losses. ‘ .

Too much dependence: failing to )

provide meaningful privacy

guarantees (bound by “no free Increasing deoendence on Z
lunch” [K2012]). kil

11/81
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Let d, be the log-max divergence between two distributions.

Corollary: robustness to misspecification
If the data is generated by 0* ¢ ©, then releasing Y satisfies (€ + 2A,is)-TP,
where:

Amis — mf sup max{dOO(IP)Q*,SUIP@z,Sl)? dOO(PQ*,SszPQz,Sz)}
0:€0; (s1,52) ESpairs, DPz
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Discussion: MCMC Approximation Privacy Risks and Atomic Regeneration
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Many generic «-DP algorithms are not exactly implementable!

Why can’t we just use MCMC?
MCMC approximation has a privacy cost

Heuristic MCMC convergence measures tell us nothing about said cost

Approximation § cost (Li et al, 2016)

A sequence of mechanisms M,, = {pmx | x € X} approximating the
exponential mechanism, M,,, as m > 7(a) is (¢, 5, )-DP where §, = (1 + e€) if

r(@) £ sup inf{t >0 [luex — pxllpy < .
Xexn

14/81
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Current approach: bounding distributional distances between the MCMC
approximation and the target distribution

Total variation: for V-geometrically ergodic algorithms, there exists
re(0,1),CeRand V:Y+— RT sit.:

H:“m,X - ,UXHTV < CV(YO)rm

Examples: Metropolis-Hastings, Hybrid MC, Hamiltonian MC

Rényi divergence: (Ganesh and Talwar, 2020) derive asymptotic rates for
Langevin dynamics step sizes and runtimes to satisfy (€, «)-RDP

Problems with existing approaches:
Asymptotic rates can’t be used to calculate finite-chain privacy loss
Need to bound distances for worst-case slowest mixing chains

None of the mechanisms above are «-DP

15/81
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Original approach (typical MCMC analysis):

Approximate a target distribution using a guaranteed finite runtime
sampling algorithm

Estimate the quality of the approximation, often by heuristic assessment of
convergence

Alternative approach (perfect sampling):

Derive an algorithm that modifies an existing Markov chain with random
runtime to generate an exact sample from the target distribution

Before use, determine which conditions are necessary so the expected
runtime is finite and the sampling scheme is feasible

16/81
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Consider a Markov chain that, w.p. 1, returns to some state S;egen:
Each “tour” of the state space is IID by Markov property

Target distribution is a mixture of the last state entered BEFORE entering
Sregen, conditional on the times it takes to return to Siegen
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Notation: )
Ny : YV x Fy + [0, 1] £ Transition kernel

Ym : mth element of original Markov chain
s: Y+ [0,1] £ Minorizing function

v : Fy — [0, 1] & Minorizing measure
&y 2 Dirac delta measure at y €

Y/

Key assumption: minorization

Nx(y,A) =2 s(y)v(A), Yy eV, AcF

18/81
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Decompose [1x into its minorizing kernel and a remainder kernel R, ¢

Nx(y,A) =s(y)v(A) +[1 —s(y)[Rys(y, A)

Next, extend the state space to ) x {0,1} so that the random variable (Y, p)
evolves according to:

My sptio (Vs 0i A, ) 2 [Lipe1yV(A) + Lpeoy Rus(v, A)] s(v)? (1 —s(y)) ™"
Extended chain “regenerates’ when p,, = 1:

Ty.s = min{m € N | ppy1 = 1}

19/81
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The original target distribution 1 x is an infinite mixture conditional on
regeneration times for the split chain!

N P(1,s > m
ux(A) = (E’[T i )IP)(YmEA|T,/,52m)

m=1

To sample from px, we need to complete two tasks in finite expected time:
Sample from T with PMF P(T =t) = %
Sample from P(Y, € A|1,s > T)
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Theorem (Lee et al, 2014)

Suppose there exists a singleton set {a} € F such that:

(Regeneration) There exists a measure fiyegen On (Y, F) such that:
HX({a}a A) — ,uregen(A) VAeF.

(Uniform minorization) there exists 8 > 0 such that:
inf Tl >[5 >0
T EEAWZRiE]) =2

Then the mixture sampling method can be used to draw perfect samples from
tx with finite expected runtime.

Key proof techniques:
s(y) = Nx(y,{a}) and s(y) = 8 are BOTH minorizing functions w.r.t. &,
Sampling from remainder using Bernoulli Factory algorithm (Huber, 2014)
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Let (51752) < Spairs,DPz and B € FY- Let M0, = IP)( | 9275i)' Let /7* be the
joint distribution that achieves the Wasserstein distance bound. Then

IP)(Y c B ’ 51,92) B fX P(Y cB | 51,(92,X :X) d,UJLQZ(X) (1)
P(Y € B|s,0;) [,P(Y€E€B]|s,0,X=x)du,(x)

e Tyeny o0 (—5580 ) dme, () dra(y)

= (2)
fy Jx Liyery exp (_;)((g))) dpz,g,(x) dvz(y)
Jy Jx J Liyeny exp (—#(A”)) dv*(x,x") dv(y) )

- el « .
Jy Jre S Livesy exp (=585 ) o (x,x) dva(y)
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Let Ba,(x) 2 {x' € X | d(x,x’) < A,}. Then by construction and definition of
the Wasserstein distance,

IP)(Y c B ‘ 51,(92)
IP)(Y e B ‘ 52,(92)

(4)

B fy fx fBAZ(X) L¢yepy exp (_ ;aLE(AyZ))) dv*(x,x") dvz(y)

= (5)
el .y
fy f)( fBAz(x’) ]l{yEB} exp (_20X(A()3) d~y (Xa X/) dVZ(y)

e(L,, o(A, *
_ Jy Jx Joy, 0y Livesy exp (— e ))) dv*(x,x") dvz(y)

(6)
el “
Jy Jx fBAZ(X’) Liyesy exp <_ o ()3) dv*(x, x') dv;(y)

20 (A
< exp (g) exp E (sup{!Lx(y) — Lo (y)| (!;(@Ai’)é X" d(x,x") < Az})] (7)
< exp(e).

(8)
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Proof: WKNG
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Regularity conditions:

n~1V?Lx (y) exists almost everywhere vz , and the smallest eigenvalue of
Lx (y) is greater than o > 0 for all n € N, y € ), vz almost everywhere.

There exists a unique y* € ) such that as n — o0,
Y* Zargminly (7) —p y*. (9)
yey
Forallne N, Az > A*>0w.p. 1

o,(A*) is continuous in y, and o,(A*) > o*(A*) holds vz, almost
everywhere.
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Regularity conditions (continued):

For all n € N,
OéHyn—y,THK>
exp | — dvy; < 0. 10
/X p( 2Uy:(A*) % ( )

Zn —D Z* and Vz. —p Vzx K A.

Let Bs(-) be a K-norm ball of radius §. We assume that for a € ) and
some 0 > 0,

/B ()= 2e() (1)

In words, the base measure should support the true solution y* with
probability bounded away from zero by some constant.
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Let f,(y) be the density of the Wasserstein K-norm gradient mechanism,

fa(¥n) o< exp (—E szgi)z’gt))”’() dvz,(¥n)- (12)

Let a, = n(y, — y*) with density h,(-) so that

hn(an) o exp (—6 ”wgiﬁ A*;’)"/ ”)”K) duz,(yi + an/n).  (13)

Note that in the transformation above, the Jacobian constant n~! gets
absorbed in the proportionality.
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Next, we Taylor expand the loss function,
Vix,(yn) = VLx, (v +an/n) = V2L, (y ) +0p(1) (14)

Following the proof of [RA2019], using Assumptions (1) - (4), there exists a
constant C > 0 such that

1 Ca

— IVLa(yn +an/Mllk < ——7n
Uy;;+an/n(AZn) " o*(A*)

lanll - (15)

Then by the dominated convergence theorem, Assumptions (5) - (6), and the
continuity of o, we conclude that

nILmOO hn(a,) = h(a) o exp ( 20, (A HZ aHK) (16)
with respect to the base measure vz+(a) (note that Assumption (6) ensures the

asymptotic base measure supports y*).
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Proof: Exact Sampler Runtime
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Theorem: modified Metropolis-Hastings perfect sampling for privacy

Let [1x be the transition kernel for a Metropolis-Hastings Markov Chain with
symmetric proposals g. We can construct a Markov chain on the extended
space with proposals:

1

g(y,y') = 5 ax(y,y') + 10,

And an algorithm to sample from density fx that satisfies e-DP with expected
number of total proposed samples N qp:

48
2(1 — k)2 innyy pACCGpt(y),

II:{"[l\lprop] S k

where:
x(y')

" fx(y)

PAccept (_V) 2 /

Y

} dv(y').

gx(y,y’) min {1

30/81

Jeremy Seeman FP for public data curation



Key ingredient: choose s(x) = s € (0,3) and v = &, (point mass at a)

o0

px(A) = 3 s(1—5)" [&RE |
m=1
To sample from px, we need:

Sample T ~ Geometric(s)

Sample from Y | T =t ~ &R
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Residual kernel has a special mixture form:

1_HX(y7{a})
1—-s

I—IX(Y7{3})_S
1—-s

Re, s(y,A) = Re, nx(- {a1), (v, A) + £.(A)

Each mixture is easy to sample, but need to choose a component using:

Bernoulli (1 - Hlx_(ys’ {a}))

This is called a Bernoulli factory problem (Huber, 2014)

“Using a black box simulating Bernoulli(6), simulate Bernoulli(f(8)) for
known f and unknown 6"

(Huber, 2014) derives efficient algorithms for solving this problem
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A

(

EH & &3 &

( Nouter = Number of outer loops in main algorithm
Ninner = Number of rejection proposals to sample from Y ~ Rﬁa,ﬁ.,{a}(ym—h )
Ngern = Number of Bernoulli factory p-flips to select f(p) flip

| MNonatomic = Number of samples from fix required to sample from px

:NOuter] — %

Niner] < ((1— k) inf ey PAccept(Y))_l
:NBern] S 274

:NNonatomic] — (1 — k)_l
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Proof: Exponential Family Stochastic Dominance
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Let X1,...,X, K fo for an exponential family with sufficient statistic T(-). Let
Y be an instance of WEM with density

€

8x(y) ocexp | — L(lly = TCID | 5 (17)
20(A;)

for some loss function L that depends only on a norm ||y — T(x)||. Let
Z = h(X) and let Y* = Proj(Y, Z), so that Y, Y* € Y. Then Y has a
monotone likelihood ratio in 6. Furthermore, define the test:

Hy : 0 < 6, Hi: 0> 0. (18)

For any unbiased test ¢ : V* — [0, 1] for 6 based on Y™, there exists a

uniformly more powerful test ¢’ : Y x Z — [0,1]. If Po(Y # Y*) > 0 for all
0 € ©, then this improvement is strict.
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Main points:
Using [W1985], the marginal of Y has MLR in T.

If Y* is not a bijection, multiple Y's get mapped to the same Y* which
allows for a tighter bound on Type | error.

1 This can be used to construct the uniformly more powerful test.

36/81

Jeremy Seeman FP for public data curation



Algorithms: Perfect sampling
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Result: Y ~ jix
Input: Transition kernel 1, singleton atom a € )/, minorization 3 > 0

Sample M ~ Geometric(f3), set Y1 = a ;

for m=2 to M do
Using the Bernoulli factory algorithm [H2016], sample:

1— ﬁX(Ym—h {a})
= ). (19)

Zm,m ~ Bernoulli (

if Z, =1 then
Sample Yy, ~ R . (. 1a1)(Ym—1,") using rejection:

Propose Y, ~ MNx(Ym-1,").
Accept if Y, # a, else go back to 1.

else

| Ym =d
end

Release Y.

end
Algorithm 1: Exact implementation for sampling from a singleton atom mix-

ture
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Problem: singleton atoms don't usually exist

Solution: make our own! (Brockwell and Kadane, 2006)

Extend the state space with an artificial atom at a € Y to yield a new

target density:
fix(A) = (1 = k)ux(A) + klzea

w.r.t. a new base measure:
D(A) = (1 — k)v(A) + k&,
Modify the transition kernel:
Mx(x, A) = wlx(x, A) + (1 — w)Ms(x, A)

Where [T} transitions between the two mixture components
Apply the previous algorithm to sample from jix

Use samples from jix to sample from px
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Implementation choices specific to DP:

Choose a € Y from the set of confidential results (i.e. what we would
release without privacy preservation)

a € arginf Lx(y)
yey

Assumptions about the state space (such as compact X'") help to satisfy
our privacy AND our sampling assumptions:

dA; < oo s.t. |Lx(y) — LX/(y)| < A
168 > 0s.t. inf ey MNx(y,{a}) > B

Many different possible choices for chain modification (ex: Brockwell and
Kadane, 2005)

e Need to balance time spent in the artificial atom and original chain
@ Properties of [1x don't necessarily translate to lNx
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Result: Y ~ f,
Input: Sample space )V and loss function L,.
while TRUE do

Sample Y ~ f, using Algorithm from [L+2014].
if Y + a then

| Release Y.
end

end
Algorithm 2: ConfAtomPerfect: e-DP exact sample from exponential mech-

anism
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To additionally privatize runtime, we need the number of inner-loop proposals to
be 0-DP. We assume an adversary knows a modified Niyner Where

/\NIInner = pNInner + (1 — p)(NInner + NWait)a (20)
where,
. f nl f cce
p ~ Bernoulli (m xexr Mlyey PA pt(y)) : (21)
infy ey Paceept (V)
Nw.;t ~ Geometric ( m)]; inf pAccept(y)) (22)
xXexn
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T —
Sample M ~ Geometric(f3), set Y1 = a;
for m=2to M do

: [Same as previous algorithm].
if Z,, =1 then
: [Same as previous algorithm].
Sample
[ f [ f cce
p ~ Bernoulli ('” xex infyey Paccepi(y )> , (23)
'“fyey PAccept (y)
if p =1 then
Set
ﬁinner = Ninner- (24)
else
Sample
nwait ~ Geometric (Xlgi ;2; pAccept(y)) . (25)
Update:
ﬁinner é Ninner + Nwait - (26)
end
else
| Ym =4
end
Release Y.

end

Algorithm 3: Modification to [L4-2014] to privatize runtime.
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Algorithms: ABC Inference
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Result: One sample from 0 | Y, Z
Sample §* ~ (0 | Z) ;

Sample X* ~ 7(- | 0%, 2) ;
Sample U ~ Unif(0,1) ;

if
Yix2) o
sup,«cy T(y* | X*, Z)

then

| Return 6*.
else

|  Go to beginning.
end

Algorithm 4: Posterior rejection sampling conditional on public information
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Result: Estimate of I@[a(@) | 'Y, Z] using proposals from density g
Sample ) ... 9(m) ~ 7(0| Z = 2) ;
Sample XU) ~ (- |©@ =0U), Z = 2) ;

Calculate _ _
() _ 7T(Y ‘ X(J)az)ﬂ_(eo) ‘ Z) 28
e 2(60)) | (28)
Return )10
~ T owWa(gu
Ela(d) | Y, Z] & 2j1 ( ). (29)

> wl)

Algorithm 5: Posterior importance sampling conditional on public information
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Case study: Rural Alaksa mortality
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(Santos-Lozada et al, 2020) demonstrated that mortality rates (using both CDC
and Census data) by county have urban vs. rural and racial disparities when
comparing non-private and private data released by an earlier version of the U.S.
Census DP Algorithm.

Figure: Percentage errors in mortality rates comparing original Census private and
non-private results for k = 14 counties in Alaska
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Public information for contingency tables is often restricted to linear constraints
of the form: C;(Y) = 1{Q;Y op; ¢} for j € [J]

( Qi Constraint query matrix

y OP; Elementwise comparison operator

\ o Constraint value

For the non-private data, P(C;(X) =1 Vj e [J]) = 1.
Ex1: structural inequalities: X; < X
Ex2: exact marginals: TX = n,.
Post-processing takes Y as-is and solves the optimization problem:

Z2h(Y)=argmin|[Z* - Y|} st. QZ  op; &, Vjel[J]
Z*
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Instead of post-processing to ensure constraints are verified, incorporate
constraint information into data generating process

Exploit separability of different sample generation stages:
o Ex1: structural inequalities: X; < Xk = P(6; < 6i) =1
o Ex2: exact marginals: 3’ X = n, — P(z?Té’: 3TY s — ny) = 1.

Define model-dependent constraints M and data-dependent constraints
D as applied to 6 and <

@2 I m@®, @2 I 4@
meM

deD
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Data: Observed DP data ?Obs, model-dependent constraints M, conditional prior T3 Can () =17
data-dependent constraints D, likelihood f)?|5' conditional error density gzc,(2)=1.

Result: N samples from 6 | Y
while /1 < N do

Sample 00 ~ 7(- | Cu(0) = 1), XD | 60) ~ £(- | 61), U ~ Unif(0,1) ;
if
U < g(e= Yobs_X(i)| Cp(é) =1)
" SUPyeq, (8= Yobs — X | p(8) = 1)

then

‘ Accept sample 5(i), I—i+1;
else

‘ Reject sample o) :
end

end

Algorithm 6: Constrained posterior method: DP posterior sampling given additive perturbation and
public knowledge constraints
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Analysis outline:

e Generate multiple copies of private synthetic data, and post-process each
copy according to given public information

e Compare accuracy of inferential test statistics across each synthetic data
replicate

Methods to compare:

Naive: directly substitute noisy DP counts Y into test statistic calculation
PostProcessed: directly substitute post-processed DP counts Z into test
statistic calculation

ConstrainedPosterior: estimate test statistic using empirical distribution
of constrained posterior samples
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Hp: mortality rate by race at national level equals mortality rate by race at
state level

Test statistic: x2,
Public information: state deaths, state total population

Constraints:

e County level deaths between 0 and state total

e County level population between 0 and state total

@ County level deaths smaller than county level population
e State level marginal deaths agree with public data

e State level marginal population agrees with public data
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ind SampleMSE SampleVar SampleBias2
Naive 1053 986 77
PostProcessed 201 130 72
ConstrainedPosterior 102 62 41

Table 1. Comparison of DP estimates of 2., test statistic from 100 synthetic DP
data sets (true value x2,, ~ 964 on (2 —1) x (3 — 1) degrees of freedom (two mortality

statuses by 3 race groups)
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Hy: White mortality rate at national level equals white mortality rate by
race at county level

Test statistic: P(Hy | Xobs)

Public information: county level white population

Constraints:

e County level white deaths between 0 and county level white population
e County level marginal populations agree with public data
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County Method MSE Variance Bias
Haines Naive 0.33 0.20 0.13
Haines PostProcessed 0.32 0.19 0.13
Haines ConstrainedPosterior 0.04 0.03 0.02
Nome Naive 0.31 0.19 0.11
Nome PostProcessed 0.31 0.20 0.11
Nome ConstrainedPosterior 0.03 0.02 0.01
Prince of Wales Naive 0.17 0.13 0.04
Prince of Wales PostProcessed 0.17 0.13 0.04

Prince of Wales ConstrainedPosterior 0.06

0.05 0.01

Table 2. Comparison of DP estimates of P(H | {Y;}7_1) from 100 synthetic DP data

sets for small counties in Alaska
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Case study: Pennsylvania Spatiotemporal COVID-19 data
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Data (available through PA Dept. of Health and IPUMS)

Private data:

e County-level COVID-19 case rates at month t
e County-level COVID-19 death rates at month t

Public data:

o State-level COVID-19 case rate at month t
e County-level COVID-19 case rates at time t — 1

Synthesis methods:

Geometric noise with Ly-L; post-processing for congeniality
WassExpMech with three different base measures:

e Improper uniform over integers
e Congenial with public state-level case rate
@ T + Dirichlet prior on t — 1 county rates
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With [n] £ {1,2,..., n}, define:

(j€{l1,...,J} = Pennsylvania counties, J = 67

t c{1,..., T} = Year-month periods, T = 24

Xj(i) 2 Number of COVID-19 cases in county j at time t
\Xj(ftj) 2 Number of COVID-19 deaths in county j at time t

(30)

With public information:

fx(i) L= Xj(ct) .

(&~ _ )

Jt]. Jt].

7, = ) 31
t <ZX“ () (31)

c d
P(X-{B > X\)=1.
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First, we synthesize

(c) _ y(c) (C)
{Z:J:( @) _ );(d’i (a) (32)
J5t J t’
where © (d) i .
51-; €} *C DiscreteLaplace (A) : (33)

Then, we will perform deterministic two-stage post-processing; first, we will find
the solution to the L, optimization problem,

f/t(c) o (y(c))_ Yt(C)
() Yge iy y(d) y(@)

(<)
;" =5,
<;J » (35)
yi 9 >y >0 vjel.

2

s.t. (34)
L,

\

62/81

Jeremy Seeman FP for public data curation



Next, we will find the solution to the integer L1 optimization problem,

Yt(C)* = -Y/t(C)- + argmin (Y(C)> — Vt(C) s.t (36)
Yt(d)* \N/t(d) Ye{0,1}?/ (9 Yt(d) 1’ -
> (c)
.
Q] Z (37)
v (C)+ LY(C)J YNV 20 viep
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Naive base measure:
Vz(Y) X ]l{YEZJ}° (38)

Deterministic congenial base measure:

VZ(Y) X ]]_{YEZJ, ;l:l Yj(,i)zstcﬂ/j(,?zyj(j)zo}. (39)
Prior congenial base measure:
vz(Y) o< p(Yisi9 X)L (40)

tvew) 3oL, vf=st. v/ 2 v ) z0p

=1 "j,t

where ¢ is the PMF of the Dirichlet-Multinomial distribution:

M(as (st +1) ﬁ r(Y'e +ax< )
M((a+1)s) S TV N(axS, +1)
(41)

¢( Yt(c) : Szgc) ; ozxt(i)l) =
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In theory, Bayes estimators based on Y* are worse than those based on
Y, Z. However...

e We can only numerically approximate the Bayes estimator based on Y™ due
to intractable post-processing.

e 1 uncertainty quantification for estimators based on Y™ depend on the
quality of this numerical approximation, potentially confounding the effects
we want to isolate.

Need an alternative strategy to compare estimators!
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Theoretical problem: post-processing degrades statistical signal by mapping
different sufficient statistics to the same output.

Empirical realizations for COVID-19 case study:

ContractedCaseZeros: cases where multiple potential imputations of the
private COVID-19 case data are contracted to 0

ContractedDeathZeros: cases where multiple potential imputations of
the private COVID-19 death data are contracted to 0

ContractedRates: cases where the constrait that COVID-19 cases is
bounded below by COVID-19 deaths contracts imputations of the
COVID-19 survival rate to 0.
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For binary count data, we consider families of distributions @(20721), indexed by
two parameters z; and zy. Let / # j and assume Z defines the following
probabilistic public information for all 0, ,,) € O (4 ):

P(X;Zl’Sjl,Z:Z)Szl E[O,].], IP)(X;:].‘SJ(),Z:Z)ZZOE [0,1]

Notes:

As z; — 1 and zy — 0, public information reveals more probabilistic
information about private statistics.

Related to the “worst-case” optimal transport solution, in which all the

probability mass moves between two conditional distributions according to
this dependency.
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Case study: worst-case MCMC convergence vs. realized exact runtime
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Key property

MCMC methods require accounting for the slowest mixing chain, but our
method can be much faster because the runtime depends on the realized
confidential data

lllustrative example: Laplace mechanism (Lx(y) = || X — y||,) with data
bounded in [0, 1]¢

Two original Markov chains: Metropolis-Hastings (MH) with independent
uniform proposals and symmetric Laplace proposals with scale «

Closed form expressions for worst-case § with MH MCMC (Mengersen and
Tweedie, 1996)

lex,m — px|lry < (1= Bymcmc)”, (42)

{5MCMC,Unif = (21— e_en/zd))d
Bricmc,Lap 2 (20) exp (= (ad + €)) (2(1 — e™))°
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(Dashed line = 64-bit double precision threshold)

a) Independent uniform proposals:

b) Symmetric Laplace proposals, scale = en/2:
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Benefits of our approach:
Satisfies e-DP

Runtime depends on realized confidential data, and not the confidential
data for the slowest-mixing Markov Chain

Only requires minorizing bound, and not properties of Lx (i.e. convexity,
Lipschitz, etc.)

e Most existing analyses of the exponential mechanism (like Ganesh and
Talwar, 2020) require these assumptions
e Demonstrates why regeneration is more suited to this problem than other

perfect sampling methods like coupling from the past (Propp and Wilsoin,
1996)

Easily extendable to other MC algorithms satisfying minorization condition
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Limitations of our approach:
Uniform ergodicity assumption: methods do not have finite expected
runtime for unbounded state spaces, like RY. Caveats:

e Y is often artificially restricted to bound the sensitivity of Lx, so this issue is
not prevalent in practice.

e For some perfect sampling algorithms (like ours based on Lee et al, 2014),
uniform ergodicity is a necessary requirement for finite expected runtime.

Minorizing constant suffers from curse of dimensionality

Side-channel vulnerability: multiple replications of similar queries could leak
information about confidential data through runtime
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Traditional analysis: privacy vs. utility

Extensions of our work: privacy vs. utility vs. runtime
Trading off utility and runtime:

e Exponential mechanisms can be implemented exactly over enumerable
discrete state spaces

e — corollary: if we release a sample from a discrete approximation w.p. k,
then we reduce runtime at the cost of some utility

Trading off privacy and runtime:

e (Awan and Rao, 2021) consider rejection sampling where Ny op is known
and can leak information
e — corollary: with longer artificial runtime, can release Nprop L X with

0-DP so that (Y, Nprop) is e-DP

77/81

Jeremy Seeman FP for public data curation



Setup: ¥ = {y e R? | |ly|l; < B}, X € [-1,1]"%P, Z € [-1,1]". Define the
original loss function /x(y):

1

> A 2
Ix(y) = 5 1Z — Xyl|5 + 5 yll3 -

For any two X, X’ that differ on one element and all y € Y

IVEx(y) = Vix(y)l; < 2(1+ B) up Ix[[y <2(1+ B)p
x&|0,1fP

This yields a final mechanism given by:

€
4(1+ B

Aey) x o0 (~ g X700 = 24 Wl ) Licen (483)
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Runtime relaxation: sample from Y* ~ [ix, and if Y* = a, sample Y ~ ,ug?isc)

Mg?isc) implemented over £ sample points iid from Unif()))

Reduces runtime by preventing multiple draws from fix

How to measure loss in utility?

Err(e, £,¢) £ Qos{P(Lx(y)"» ") > )},

where Qo5 is the 5% empirical quantile across ney, experiment replications.
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Constants:
(n =100
p=5
) BE(1,2,-3,00)7
A =1
Random variables:
( X; ~ Beta(5,5) ie[n],jep]
q € ~ Beta(20,20) i € [n
4 = Xi. B+ (2e—1) ie€ln
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Moderately-sized discrete approximations of the state space can provide
comparable utility while saving runtime.

Relative effect depends on privacy budget € and error tolerance ¢

Still suffers from curse of dimensionality (n = 100, p = 5)
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