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Statement of problem 

 Data for statistical analysis may only be available from different 

samples, with each sample containing measurements on only some of the 

variables of interest. 

 Problem: generate a fused database containing matched data on all  

 the target variables. 

 In this presentation, I consider the case where the samples are drawn 

by informative sampling designs and are subject to not missing at 

random (NMAR) nonresponse.  
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Statement of problem (cont.) 

 If the sampling and nonresponse processes are ignpred, the 

distribution of the observed data for the responding units can be very 

different from the distribution of the population data, which may distort the 

inference process and result in a matched database that misrepresents 

the joint distribution in the population.  

 Our proposed methodology employs the empirical likelihood 

approach and is shown to perform well in a simulation experiment and 

when applied to real sample data. 
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Informative sampling 

Let A and B  be two independent samples of sizes An  and Bn , selected 

from a population of N independent and identically distributed records 

( , , )i i ix y z , generated from some joint probability density function (pdf) 

( , , ; )Pf x y z  .  

The statistical matching problem is that only ( , )X Y  are observed for the 

units in A, and only ( , )X Z  are observed for the units B . 

We assume that the sampling designs are informative, i.e., the sample 

selection probabilities for A are correlated with at least some of the 

variables ( , )X Y , and similarly for the sample B ,  implying that even if all 

the three variables had been observed in the two samples, the joint sample 

pdf ( , , )Sf x y z  of the sample data is different from the corresponding 

population pdf, ( , , )Pf x y z .  
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Not missing at random nonresponse 

Additionally, we assume that the two samples are subject to not missing 

at random (NMAR) unit nonresponse, i.e., the probability to respond 

likewise depends on the study variables.  

The data available to the analyst consist therefore of the sets of 

responding units in A, ( AR ) and B , ( BR ). Consequently, even if A and B 

contain information on ( , , )X Y Z , the joint pdf of the observed data, 

( , , )
SRf x y z , differs from the sample pdf ( , , )Sf x y z  under complete 

response, and from the population pdf ( , , )Pf x y z ; ,S A B . 

The purpose is to generate a fused dataset with joint observations on 

(X,Y,Z), which is representative (similar distribution) of the population 

distribution from which the samples are taken, and use it for inference. 
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The empirical likelihood approach 

The empirical likelihood (EL) combines the robustness of nonparametric 

methods with the efficiency of the likelihood approach.  

It is essentially the likelihood of an approximation to the true population 

distribution by a multinomial distribution, where the unknown 

parameters are the point masses (“probabilities”) assigned to the 

distinct values. Hence, it does not require specifying a parametric 

population model, and is thus more robust and often easier to implement. 

In what follows we assume that X is discrete, taking K values with 

probabilities 
1

P( ); 1
K

X X

k k k

k

p X x p


   , while Y, Z are continuous.  
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Conditional independence assumption 

A common approach to deal with the statistical matching problem is to 

assume that Y and Z are independent given X, known as the conditional 

independence assumption (CIA).  

Let ( , . )i i ix y z  define the values associated with unit i  and denote 

Pr( )X

i ip X x  , 
| Pr( | )Y X

i i ip Y y X x   , 
| Pr( | )Z X

i i ip Z z X x   , 

each having its support in the data observed in the samples.  

Under the CIA, the joint population multinomial probability of ( , , )i i ix y z  is 

given by 

| |XYZ X Y X Z X

i i i ip p p p . 
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The sample distributions 

Let  :k i kA i A x x    be the set of sampled units in A with kX x .  

Let 
A

iI  be the sample indicator taking the value 1 if unit i  is drawn to the 

sample A and 0 otherwise. For ki A  denote, 

, ( 1| , ),XY A

i A i i iP I x y  
|

, , ,( 1| )
k

X A XY Y X X

i A i i j A j k A

j A

P I x p  


    .  Hence,        

       
|

,| |

, |

,

( 1| , )
( | , 1)

( 1| )
k

XY Y XA
i A iY X A Y Xi i i

i A i i i iA XY Y X

i i j A j

j A

pP I x y
p P y x I p

P I x p







   

 
.                   (1)                                

,

,

,

1

( 1| )
( | 1)

( 1)

X XA
k A kX A Xi k

k A k i k KA
X Xi
j A j

j

pP I x
p P x I p

P I
p







   




.                 (2) 

 Under informative sampling, the sample probabilities (1) and (2) are 

different from the corresponding population probabilities 
| ,Y X X

i kp p . 
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Independence under the sample distribution 

Even though the sample models are different from the corresponding 

population models, it is shown in Pfeffermann et al. (1998) that if the 

population values are independent under the population model, under mild 

conditions they are asymptotically independent under the sample model, 

when the population size increases but the sample size remains fixed. 

This permits approximating the sample likelihood by the product of the 

sample likelihoods over the corresponding sample observations.  

Hence, for sufficiently large populations, the sample EL (ESL), based on 

the observed data in A is,  

                            , |

, ,

1

( )
X
k A

k

K
nA X Y X

Obs k A i A

k i A

ESL p p
 

  ; , ( )X

k A kn A #                  (3)    

 An analogous expression holds for the ESL based on the data in B . 
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The log(ESL) based on the sample A∪B (under the CIA) 

| |

, , , , ,

1

| |

, , , , ,

1 1

, ,

1

log( ) log( ) log log( )

log log( ) log

log(

k k

k k

K
A B XY Y X X XY Y X X X X

Obs i A i k A i A i k A k A k

i A i A k

K K
X X X XZ Z X X XZ Z X

k A j A j i B i k B i B i

k j i B i B

K
X X

k B k B k

k

ESL p n p n p

n p p n p

n p

  

  





  

   



 
   

 

  
     

   



  

   

 , ,

1 1

) log .
K K

X X X X

k B j B j

k j

n p
 

 
  

 
 

    (4) 

 The unknown parameters in (4) are the probabilities 
| |{ , , }X Y X Z X

k i ip p p . 
 

 The sampling probabilities in A and B  may depend on many 

unobserved variables but by definition of the sample pdf, one only needs 

to model the probabilities ( 1| , )A

i i iP I x y  and ( 1| , )B

i i iP I x z .  
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Estimation of the conditional sampling probabilities 

The probabilities 
, ,( 1| , ) 1/ ( | , )XY A

i A i i i A i A i iP I x y E w x y     (Bayes) and 

, ,1/ ( | , )XZ

i B B i B i iE w x z   can be estimated outside the likelihood by 

regressing the sample weights , ,1/i A i Aw  , ( , ,1/i B i Bw  ) against ( , )i ix y

, [( , )]i ix z , using the observed data in A and B .  

The ESL estimators of the unknown probabilities are obtained by 

maximizing the loglikelihood (4), subject to the constraints, 

| | | |

1

0, 0, 0, 1, 1, 1
k k

K
X Y X Z X X Y X Z X

k i i k j j

k j A j B

p p p p p p
  

        .                        

 

 



12 
 

Estimators of the unknown probabilities  

The estimators of the unknown probabilities are: 

1 1 1 1

, , , , , , , , , ,

1 1

| 1 1 | 1 1

, , , ,

ˆ ˆ[ ( ) ] / [ ( ) ], [ ( ) ] / [ ( ) ]

ˆ ˆ( ) / ( ) , ( ) / ( ) ,
k k

K K
X X X X X X X X X X

k A k A k A j A j A k B k B k B j B j B

j j

Y X XY XY Z X XZ XZ

i i A j A i i B j B

j A j B

p n n p n n

p p

   

   

   

 

   

 

 

 

 

 
   (5)         

where .
ˆ X

k Ap , ,
ˆ X

k Bp  are the estimates of 
X

kp  obtained from the two samples. 

The estimates ,
ˆ X

k Ap , .
ˆ X

k Bp  can be harmonized into a unique estimate 
X

kp  by 

a linear combination of the two estimates,  

                           , ,
ˆ ˆ ˆ(1 )X X X

k k A k Bp p p    ;  0,1 .     

A plausible choice is / ( )A A Bn n n   . See the article for other choices.                                                                                                                                           
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Adding calibration constraints when maximizing the ESL 

When population means of variables measured in the sample A and/or in 

B are known, they can be added to the constraints of the ESL. The 

following calibration constraints may be added, depending on data 

availability: 
1

K
X

k k X

k

p x 


 , 
|

1 k

K
X Y X

k i i Y

k i A

p p y 
 

  , 
|

1 k

K
X Z X

k i i Z

k i B

p p z 
 

  , 

where , ,X Y Z    are the known population means of , ,X Y Z , respectively.  

 In the empirical study we use the constraint 
1

K
X

k k X

k

p x 


 . 
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Generation of a fused data set 

Once the probabilities 
| |{ , , }X Y X Z X

k i ip p p  governing the population 

multinomial model have been estimated, a fused data set with joint 

observations ( , , )x y z  is constructed as follows:  

(i) Generate n observations taking values 1 2( , ,..., )Kx x x  with probabilities  

1 2
ˆ ˆ ˆ( , ,..., )X X X

Kp p p ;  

(ii) For 1,...,i n , 1,...,k K , draw a value iy  from the estimated probability 

function 
|ˆ Y X

ip , taking the values 
,

1 2( , ,..., )X
k A

k k k

n
y y y  with probabilities 

,

| | |

1 2
ˆ ˆ ˆ( , ,..., )k k k

X
k A

Y x Y x Y x

n
p p p , where , { : }X

k A i kn i A x x  # . 

(iii) Apply a similar procedure for drawing values iz  from the estimated 

probability function 
|ˆ Z X

ip .  
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Comments 

 The consistency of the estimators of the model parameters guarantees 

that for sufficiently large sample sizes An , Bn , the fused data set can be 

considered as being generated from the joint population pdf.  

 Even under the CIA, It is not correct to only impute the missing values 

in the two samples because under informative sampling, the observed 

( , )x y  values in A are not representative of the population ( , )x y  values. 

The same holds for the sample B. 
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The EL under informative sampling and NMAR nonresponse 

So far we basically assumed full response. In what follows we assume that 

additionally to informative sampling, the samples A and B are subject to 

NMAR nonresponse, by which the response probabilities depend in some 

stochastic way on the outcome variables of interest.  

Let 
A

iR  define the response indicator and AR  denote the set of responding 

units in A, of size Ar . The response process is assumed to be independent 

between units.  
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The EL under informative sampling and NMAR nonresponse (cont.) 

Let 
, ( 1| , 1)X A A

i A i i iP R x I    . By Bayes rule, for ki A   

  , ,

, ,

, ,

1

( 1| , 1)
( | 1, 1)

( 1| 1)A

X X XA A
k A k A kX A A Xi k i

k R k i i k A KA A
X X Xi i
j A j A j

j

pP R x I
p P x I R p

P R I
p

 

 


 
    

 


                         

,

|

, ,| |

, , |

, ,

( 1| , , 1)
( | , 1, 1)

( 1| , 1)A

A k

XY XY Y XA A
i A i A iY X A A Y Xi k i i

i R i k i i i AA A XY XY Y X

i k i i A i A i

i R

pP R x y I
p P y x I R p

P R x I p

 

 


 
    

  
                                

 , :A k A i kR i R x x    defines the group of respondents in A with kX x ,  

,

|

, , ,( 1| , 1) ( | , 1)
A k

X A A A A XY Y X

k A i k i A i k i i A i A

i R

P R x I E R x I p 


       ,        

, ( 1| , , 1) ( | , , 1)XY A A A A

i A i k i i A i k i iP R x y I E R x y I      .                                           
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The EL under informative sampling and NMAR nonresponse (cont.) 

The respondents models are functions of the corresponding population 

model, the conditional expectations of the sampling weights, 

, ,( 1| , ) 1/ ( | , )XY A

i A i i i A i A i iP I x y E w x y    , and the response probabilities 

, ( 1| , , 1)XY A A

i A i k i iP R x y I    . Assuming that the response is independent 

of the sample selection,  , ,( | , ) ( | , )
AR i A i i A i A i iE w x y E w x y , in which case 

the probabilities ( 1| , )A

i i iP I x y  can be estimated by regressing ,i Aw  

against ( , )i ix y , using the observed data in A, and similarly for the sample 

B, same as for the case of full response.  
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The empirical respondents’ likelihood  

With straightforward modification of the notation, similar expressions are 

obtained for the model holding for the responding units in B. Thus, the 

empirical respondents’ likelihood (ERL) for the sample A B  is given by, 

              ( ) ( )
X X

k,A k,B

A A B B

A,k B,k

K K
r rA B X Y|X X Z|X

Obs k,R i,R k,R i,R

k=1 i R k=1 i R

ERL = p p p p

 

    .              (6)                           

 The likelihood only uses the observed data for the responding units in  

      the two samples. 
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Modelling the response probabilities 

The response probabilities are unknown and need to be estimated from 

the available data. Since no "response weights" are known, parametric 

models for the response probabilities need to be postulated. For example, 

                    0, , ,( 1| , , 1) ( )A A

i i i i A A x A i y A iP R x y I g x y       ,                                      

                    
0, , ,( 1| , , 1) ( )B B

i i i i B B x B i z B iP R x z I g x z       ,                                       

for some functions ,A Bg g , with unknown parameters 0, , ,( , , )A A x A y A    , 

0, , ,( , , )B B x B z B    .  

 Modelling the response probabilities by the logit or probit functions is 

common, but in our case the probabilities depend also on the outcome 

variables, which is different from the familiar “propensity scores” approach, 

under which the response probabilities only depend on the observed 

covariates, which is in common use under MAR nonresponse.  
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 The unknown vector parameters, A , B , indexing the response models 

in the two samples are estimated as part of the maximization of the 

likelihood. Thus, one needs to maximize the likelihood with respect to a 

larger set of parameters; [
| |{ , , }, ,X Y X Z X

k i i A Bp p p   ], for all k  and i .  

Estimation of all the unknown parameters 

Suppose that the probabilities 
| |{ , , }X Y X Z X

k i ip p p  have been estimated. The   

(profile) likelihood” of ,A B   is 
| |ˆ ˆ ˆ( , ) ( , | , , )A B X Y X Z X

A B Obs A B k i iG ERL p p p    , 

and it is maximized with respect to ( A , B ), yielding the estimators,  

| |

( , )

ˆ ˆ ˆ ˆ ˆ( , ) arg max ( , | , , )
A B

A B X Y X Z X

A B Obs A B k i iERL p p p
 

    . 
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Estimation of all the unknown parameters (cont.) 

Substituting the estimates into the likelihood (6) and maximizing with 

respect to the unknown sets of probabilities, yields,  
 

        
| |

| | | |

( , , )

ˆ ˆˆ ˆ ˆ( , , ) arg max ( , , , )
X Y X Z X
k i i

X Y X Z X A B X Y X Z X

k i i Obs k i i A B
p p p

p p p ERL p p p   ; .           (7) 

The procedure is continued iteratively until convergence.  

 The models for the response probabilities can be tested by testing the 

estimated models 
|

,
ˆ

A

Y X

i Rp  and 
Z|

,
ˆ

B

X

i Rp  for the observed data, using standard 

goodness of fit tests.  

 Once the probabilities of the population multinomial models  
| |{ , , }X Y X Z X

k i ip p p  are estimated, a fused data set with observations ( , , )x y z  

is constructed, following a similar procedure to what was described before. 
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Uncertainty in statistical matching when the CIA does not hold  

 So far, we assumed that the population pdf satisfies the CIA but 

clearly, this need not be the case. Denote by ( , | )P kF y z x  the joint 

cumulative population distribution function (cdf) of ( , )Y Z  given kX x , 

and by ( | )P kF y x , ( | )P kG z x  the corresponding marginal cdfs.  

Unless under additional assumptions, the only valid statement regarding 

( , | )p kF y z x  is that it lies in the set 
k

p  of all joint distributions having 

marginal cdfs ( | )p kF y x , ( | )p kG z x . For known ( | )p kF y x , ( | )p kG z x ,  
 

[ ( | ), ( | )] ( , | ) [ ( | ), ( | )]p k p k p k p k p kL F y x G z x F y z x U F y x G z x  ,  
 

              [ ( | ), ( | )] min[ ( | ), ( | )]p k p k p k p kU F y x G z x F y x G z x ,                                                                     

      [ ( | ), ( | )] max[0, ( | ) ( | ) 1]p k p k p k p kL F y x G z x F y x G z x   .   

 These are known as the Fréchet bounds. 
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Uncertainty in statistical matching (cont.) 

A natural pointwise uncertainty measure is the length of the interval 

{ [...], [...]}L U . For kX x , the measure is, 

2

{ [ ( | ), ( | )] [ ( | ), ( | )]} ( | ) ( | )k

p p k p k p k p k p k p kU F y x G z x L F y x G z x dF y x dG z x


    

An overall, averaged measure is, 
1

K
k X

p p k

k

p


   .                                                                                                  

Denote, 
,

, 1 2( , ,..., )X
A k A

k k k

k R r
y y y  , 

,
, 1 2( , ,..., )X

B k B

k k k

k R r
z z z  .  

The pointwise measure is estimated as, 

, ,, ,

1 ˆ ˆˆ ˆ ˆ[ ( ( | ), ( | )) ( ( | ), ( | )]
k R k RA B

k

p p k p k p k p kX X
y zk A k B

U F y x G z x L F y x G z x
r r  

      

The overall uncertainty measure is estimated as, 
1

ˆ ˆ ˆ
K

k X

p p k

k

p


   . 
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Narrowing the bounds by use of external information 

The Fréchet bounds are narrowed when additional information is available. 

Suppose that it is known that conditionally on kX x , some function of 

(Y,Z) satisfies ( , )k k ka c y z b  . The class of plausible pdfs is now,  

, { ( , | ) ( , | ) ( | ), ( , | ) ( | ),

( , ) }

k

p c p k p k p k p k p k

k k k

F y z x F y x F y x F z x G z x

a c y z b

     

 

:
 

 In our empirical study we used the constraint Y Z . With this 

constraint, the Fréchet bounds (4.1)-(4.2) are, 
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[ ( | ), ( | )] min[ ( | ), ( | ), ( | )]c p k p k p k p k p kU F y x G z x F y x F z x G z x                                      

  
[ ( | ), ( | )] max[0, ( | ) ( | ) 1,

min( ( | ), ( | )) ( | ) 1]

c p k p k p k p k

p k p k p k

L F y x G z x F y x G z x

F y x F z x G z x

  

 
  

By choosing a matching distribution from this class, the estimated 

uncertainty measure 
,

ˆ
p c  provides an upper bound for the matching error.  

The statistical matching problem consists now of choosing a matching 

distribution from the class.  

Choosing a matching distribution 

Conti et al. (2016) proposed a procedure for choosing a pdf in the class 

(11), based on Iterative Proportional Fitting (IPF). The procedure 

consists of the following steps: 
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Choosing a matching distribution (cont.) 

Step 1: Discretize Y and Z by grouping their ascending values in pre-

defined classes. Conditional on kX x , the range of Y  is divided into kh  

adjacent intervals 
| | |

1 ,.., ,..,k k k

k

Y x Y x Y x

h hI I I , where 
|

1[ , ]kY x

h h hI y y , with 

0 iy min y , h iy max y . Similar notation applies to the variable Z; 

|

1[ , ]kZ x

g g gI z z  for 1,.., kg g . For kX x , denote by ,d hY ( ,d gZ ) the 

midpoints in each interval. Let {
kC } be the contingency table defined by 

the k kh g  values 
|

,1 ,1 , , , ,[( , ),.., ( , ),.., ( , )]k

k k

YZ x

d d d h d g d h d gy z y z y z  , with cell 

probabilities , , , , , ,| | |

11( ,.., ,..., )d k d k k d k d k k d k d k k

k k

Y Z x Y Z x Y Z x

hg h gp p p .  

A separate contingency table is defined for each kx .  

The constraint ( , )k k ka c y z b   on the support of ( , ) | kY Z x  is applied to 

the values , ,( , )d h d gY Z , resulting in cells with structural zeroes. 
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Choosing a matching distribution (cont.) 

Step 2: For kX x , the marginal probabilities , |

.
d h kY x

hp , , |

.
d g kZ x

gp  in {
kC }, i.e., 

the probabilities that ,d hY  and ,d gZ  take the values ,d hy , ,d gz , are 

estimated as, 
,

, | | |

.

1

ˆ ˆ ( )

X
k A

d k k k k

r
Y x Y x Y xk

h i i h

i

p p I y I


  , 
,

, | | |

.

1

ˆ ˆ ( )

X
k B

d k k k k

r
Z x Z x Z xk

g i i g

i

p p I z I


  , 

where 
| |ˆ ˆ,k kY x Z x

i ip p  are the MLE of the ERL.  

Step 3: Once the contingency table has been defined, the midpoints 

, ,( , )d h d gY Z  are checked to identify cells in {
kC }, which do not satisfy the 

constraint , ,( , )k k d h d g ka c y z b  . These cells define structural zeroes. 

The IPF initial cell probabilities are, , , , ,0, | | |

. .
ˆ ˆd k d k k d k k d k kY Z x Y x Z x

hg hg h gp p p  where 

1hg   for cells not containing structural zeroes and 0hg   otherwise.  
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Constructing a fused data set 

A fused data set for ( , , )X Y Z  is constructed from the estimated matching 

distribution as follows:  

(I) Generate n observations ix  from the estimated distribution of X  taking 

values 1 2( , ,..., )Kx x x  with probabilities 1 2
ˆ ˆ ˆ( , ,..., )X X X

Kp p p . Denote by 
X

kn  the 

number of observations with i kx x ;  

(II) For each observation , 1,.., X

i kx i n , draw independently 
X

kn  pairs 

,1 ,1 , , , ,[( , ),..,( , ),..,( , )]
k kd d d h d g d h d gy z y z y z , with cell probabilities 

, , , , , ,| | |

11
ˆ ˆ ˆ( ,.., ,..., )d k d k k d k d k k d k d k k

k k

Y Z x Y Z x Y Z x

hg h gp p p ,  computed by the IPF.  
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Application: matching of household income and expenditure 

Samples and sampling designs 

We applied the proposed procedure to two real survey data in Italy. 

A survey collecting information on households’ income and wealth (SHIW) 

is conducted by Banca d’ltalia. Information on consumption expenses is 

provided by the Household Budget Survey (HBS), conducted by ISTAT. 

 This constitutes a serious problem since household data on both 

income and expenditure are required by policy makers for analyzing the 

impact of policy strategies. Statistical matching attempts to combine the 

data obtained from the two different, non-overlapping surveys, drawn from 

the same target population.  
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Samples and sampling designs (cont.) 

SHIW is drawn in two stages, with municipalities as the primary sampling 

units and households (HH) as the secondary sampling units. We used the 

2010 survey, which consists of 387 municipalities drawn with probabilities 

proportional to size and 7,951 HHs sampled by simple random sampling. 

The HH income is defined as the combined disposable annual income of 

all the people living in the HH (hereafter Y).  

The HBS uses a similar sampling design and collects detailed information 

on socio-demographic characteristics and expenditures (hereafter Z) on a 

disaggregated set of commodities. Here again, we use the 2010 survey, 

which consist of 470 municipalities and 22,227 HHs.  
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Accounting for nonresponse 

SHIW and HBS suffer from low response rates, about 62% in both 

samples. It is quite clear that the nonresponse is explained, at least in 

part, by the size of the HH and the income, or expenditure. The larger the 

HH, the more possibilities exist to find a contact person for an interview. 

In addition, HH consisting of only one or two elder people, often tend not 

to participate in surveys. Furthermore, as often reported in the literature, 

the response probability tends to decrease as the HH income or 

expenditure increase. In order to obtain a response rate of about 62%, 

we computed the response probabilities in the two samples by use of the 

logistic models defined before, with coefficients , ,( , )x A y A  (0.2, 0.002)  , 

, ,( , ) (0.2, 0.003)x B z B    .  
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Choosing a matching variable 

As stated before, statistical matching is usually based on a set of variables 

measured in all the data sources (the X variables). We considered three 

variables as plausible candidate matching variables: household size 

(hsize=1,2,3,4+), area of residence, and occupational status. 

After a thorough analysis, we found that the hsize is the best matching 

variable, with uncertainty measure ,
ˆ

p c  0.11, and it remains 

approximately the same when including all the three matching variables in 

the analysis; ( ,
ˆ

p c  0.107). For applying the methodology, we added the 

calibration constraint 
1

2.4
K

X

k k

k

p x


 , (hereafter C-C), where 2.4 is the 

average size of households in 2010, as published in the ISTAT website.  
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Results when matching the two surveys 

The following table displays 4 different estimates of the probabilities { }X

kp

for  the 4 size values (hsize=1,2,3,4+).  

hsize X

kp  ,1
ˆ X

kp  ,1
ˆ X

k Cp  ,2
ˆ X

k Cp  ,2
ˆ X

k CMp  ,

X

k An  ,

X

k Bn  ,

X

k Ar  ,

X

k Br  

1 0.284 0.260 0.264 0.276 0.276 5851 1989 3194 1074 

2 0.276 0.293 0.293 0.281 0.280 6292 2522 3783 1504 

3 0.209 0.210 0.208 0.200 0.205 4758 1589 3069 1028 

4+ 0.232 0.238 0.233 0.243 0.239 5326 1851 3730 1258 
 

Computing the Hellinger distance  
2

1

1
ˆ

2

K
X X

k k

k

HD p p


  , we find that for 

,1
ˆ X

kp , HD = 0.023. For ,1
ˆ X

k Cp , HD= 0.018. For ,2
ˆ X

k Cp , HD= 0.012  and for ,2
ˆ X

k CMp  

HD= 0.009. So, the proposed procedure yields overall the best estimates. 
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Results when matching the two surveys (cont.) 

We also estimated the pdfs | |{ , }Y X Z X

i ip p  under the CIA , both when ignoring 

the sampling designs and nonresponse and when accounting for them, 

imposing the C-C in both cases. Next, we generated a fused data set of 

size 10,000n  . The (weighted) correlations XYcor , XZcor  in the original 

samples are 0.38  and 0.31. In the fused data set, the correlations are 

{0.34, 0.28} when ignoring the sampling designs and nonresponse, and 

{0.38, 0.32} when accounting for them. The correlation between the 

generated values of Y  and Z  when ignoring the sampling designs and 

nonresponse in the estimation of the probabilities 
| |{ , , }X Y X Z X

k i ip p p  is 0.08. 

The correlation increases to 0.13 when both processes are accounted for. 

When assuming the CIA, the correlation computed from the original 

samples is 
CIA

YZ XY XZcor cor cor  0.12.  



36 
 

SHIW contains also some recall questions for constructing an approximate 

measure of total expenditure. The correlation in the SHIW sample between 

income and expenditure is 0.65. Thus, the fused data set constructed 

under the CIA misrepresents the joint population distribution of ( , )Y Z .  

Consequently, we estimated instead a matching distribution for income 

and expenditure by assuming the class of plausible distributions, with the 

added constraints Y Z  and the C-C, applying the IPF. Next, we used the 

estimated joint distribution for generating 10,000n    values ( , , )i i ix y z .  

The correlation between the imputed values of Y  and Z  under the CIA is 

0.12. The correlation increases to 0.55 by use of the IPF. The correlation 

in the SHIW sample is 0.65, but the expenditure is not well observed in 

SHIW. (Suffers from significant under-reporting of about 30%). 

Intermediate conclusion: The proposed procedure seems to work well!! 

THANK YOU 


